
DYNAMTC ARCHITECTURE COMPUTER

THESIS

Patrick E. Price

AEPR___________________ -"

AIR UNIVERSITY

ARFORCE INSTITUTE OF TECHNOLO.GY "''

Wright-Patterson Air Force Bose, Ohio
-- T / E G 8 D,',

~~Ac

AFIT/GE/ENG/89D-40

DYNAMTC ARCHITECTURE COMPUTER

THESIS

Patrick E. Price

AFIT/GE/ENG/89D-40

DTIC
0% i ECTE

Approved for public release; distribution unlimited

AFIT/GE/ENG/89D-40

DYNAMIC ARCHITECTURE COMPUTER

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Tecnology

Air University

In Partial Fulfillment of

Master of Science in Electrical Engineering

Accession For
NTIS GRA&I

DTIC TAB
Unannounced

Justificatiol

Patrick E. Price, B.S.
By
BDistr.ibut ion/

Availability Codes

IAve I i aiid/or
Dist I Special

December 1988

Approved for public release; distribution unlimited

Preface

The purpose of this thesis was to design a computer

that could process a large variety of calculations with a

minimum of hardware. This constraint requires a computer

that can change its structure to match the demands of the

problem currently being calculated. Computer image

generation was selected as an example problem. The

processing requirements of real-time computer image

generation require calculation of very large real numbers as

well as very small logical variables.

The results demonstrate that, in a best case

analysis, a dynamic architecture computer can demonstrate an

improvement in processing speed over conventional single

instruction, single data computers.

In preparing this thesis, I extend my gratitude to

several people for their contributions. First and foremost,

I thank my advisor, Dr. Thomas C. Hartrum, for his guidance

and support. Also, I t -. z Captain Nathaniel Davis IV and

Captain Bruce George for .eir expertise and assistance.

Finally, I thank Ms. Deborah Martin for her help in

tabulating the statistics.

Patrick E. Price

ii

Table of Contents

Preface ii

List of Figures v

List of Tables vi

I. Introduction 1

Background 1
Problem 3
Scope 4
Approach 4
Thesis Organization 5

II. Literature Review 7

Introduction 7
Estrin 9
Kartashev and Kartashev 12
Dimond and King 38
Rauscher and Agrawala 39
Fuchs and Johnson 40

III. Computer Generated Imagery Software 42

Computer Generated Images 42
Scene Generation Software 44
Required Data 51
Software Analysis 54

IV. Dynamic Architecture Computer Design 68

Dynamic Computer Features 77
Dynamic Computer Operation 86
Summary 92

V. Analysis and Conclusions 93

Analysis 93
Conclusions 101
Recommendations for Further Research ... 103

iii

References 109

Bibliography.. ill

Appendix A:Module CalligSm..r........ 112

Appendix B: Module Descriptions.................... 125

Appendix C: Collected Data on Variables 136

Appendix D: Collected Data on Operations...............208

iv

List of Figures

Figure Page

2-1 Keyword Search Strategy 8
2-2 Flowchart for Constructing a Program Graph . 31
3-1 Data Base Development System Diagram 45
3-2 Coordinate Set Definition 48
4-1 Format of Floating Point Variables 76
4-2 Possible Configurations 77
4-3 Instruction Format 84
4-4 Carry-In/Carry-Out Structure 85
4-5 Dynamic Architecture Computer 87
5-1 Percent of Execution Time Required by

Dynamic Computer 100

V

List of Tables

Table Page

3-1 Valid Variable Type and Size Combinations 58
3-2 Summary of Variable Data 60
5-3 Total Variable Data 61
3-4 Itemization of Variable Operations Data 65
3-5 Summary of Variable Operations Data 65
3-6 Summary of Other Operations Data 66
4-1 Relative Occurances by Variable Type 73
4-2 SEL 32/70 Instruction Repertoire 75
4-3 Summary of Variable Addressing Requirements 83
5-1 Summary of Processors and Operations 98
5-2 Summary of Configurations and Operations ... 98
5-3 Detailed Execution Analysis 98

vi

DYNAMIC ARCHITECTURE COMPUTER

I. Introduction

Background

Digital computers may be designed and built using

discrete components, individual integrated circuits or

microcomputer chips. A variation of the microcomputer chip

is the bit-slice chip. Each bit-slice chip contains all of

the circuits and components that would be obtained by

slicing through the processing portion of a computer. Thus,

each slice could become a small stand-alone computer if

properly connected to memory and other peripheral devices.

Large computers may be built by using a number of these

slices connected together. It is also possible to use these

bit-slice chips to build a computer that is very fast for a

specific application.

lega ilI Kt ml mlK N []g a 1

This is a desirable concept because general purpose

computers are not fast enough for certain applications. One

example of particular interest is Computer Generated Imagery

(CGI). CGI requires a data base of digitized descriptions

of three-dimensional features. By careful manipulation of

these descriptions, a realistic visual scene is created that

can be viewed on a television picture tube. This requires a

substantial number of calculations in order to create the

proper perspective and size of each object and to convert

each object to individual picture elements for display on a

two dimensional screen. Furthermore, if the illusion oi

motion is to be created, these calculations must be dcne 2t

least 0 times per second.

A general purpose computer is designed to handle a

variety of tasks equally well. Applications like COI

require that the hardware be highly tuned for several

specific types of data manipulations. Therefore, the

computation of CGI algorithms is generally done in special

purpose processors. The CGI algorithms are implemented

directly in the hardware wfL these special purpose

processors. If the CGI algorithms change for any reason, it

is not possible to change the special purpose processor

without a redesign of the hardware.

2

Currently, there is some interest in developing

general purpose digital computers that can vary their

architecture dynamically. That is, they can change from a

omputer that handles large, high precision numbers into a

computer that handles smaller, less precise numbers. When

this computer is processing smaller numbers, it would be

able to do several calculations in parallel.

Bit-slice chips make ideal building blocks for a

dynamic architecture computer, and CGI is a very good

application for testing such a design. A general purpose

dynamic architecture computer would be very complex because

it would have to be able to assume all possible combinations

of connections. A dynamic architecture computer designed to

perform CGI could be simplified to perform only those

operations essential to CGI.

Problem

The problem is to design a dynamic architecture

computer for the specific purpose of processing Computer

Generated Imagery (CGI) algorithms and to demonstrate that a

savings in time can be achieved by using this computer

instead of a general purpose computer of fixed architecture.

3

Scope

This effort includes a design for the computer in

sufficient detail to make accurate timing calculations. For

purposes of this effort, the design will not be taken to the

level that an actual machine could be constructed, although

there will be recommendations for implementing a prototype

and data for a prototype test. Whenever possible, the

design will be such that it could be extended to a general

purpose computer if desired as a follow-on effort.

Approach

The general procedure followed during the conduct of

this study was as follows:

Literature Review. The literature review

concentrated on researching the work already done in the

area of dynamic computer architecture. The review assured

that this study did not duplicate previous studies and

provided the background information for this study.

4

Analysis of CGI. This phase concentrated on

analyzing a software emulation of some typical CGI

hardware. The results of this analysis consisted of details

of required instruction sets and the size and precision of

the variables being calculated.

Design of Architecture. The result of this phase was

the design of a dynamic architecture computer based on the

information obtained from the analysis outlined in the steps

above.

Analysis of Results. This concluding phase

determined whether or not the resulting design demonstrated

an improvement in speed over a fixed architecture computer

performing the same task.

Thesis Organization

The organization of this thesis follows the steps

outlined in the approach. Chapter One contains the

background and other introductory material. Chapter Two

contains a review of the pertinent literature. Chapter

Three discusses the analysis of the Computer Generated

5

Imagery (CGI) software including the organization and

operation of the actual software, the type of data desired

as a result of the analysis, and the steps performed in

doing the analysis. Chapter Four details the design of the

architecture. Chapter Five contains the analysis of the

results.

6

II. Literature Review

Introduction

A literature review was undertaken as the first step

in this research. The purpose of the review was to find

those articles published on the general topic of dynamic

computer architecture. The results and a discussion of the

most important items found are given below.

The primary literature search into dynamic computer

architectures was performed using the Lockheed automated

data retrieval system to do a keyword search on the

COMPENDEX (Corporate Engineering Index Inc.) file. Also at

this time, a search was performed on both INSPEC files and

the NITS file using the same search strategy. Of the

abstracts obtained in this manner, only a few were directly

related to dynamic computer architecture. The keyword

search strategy is given by Figure 2-1.

Each relevant article is discussed below. The

discussions are arranged chronologically by author.

7

IALTERABLE

ADAPTABLE

DYAMCand ABSTRACT

Figure 2-I ,Keyword Search Strategy
8

Estrin

The first paper chronologically is "Organization of

Computer Systems: The Fixed Plus Variable Structure

Computer." This article describes a proposed computer

system that could be adapted to specific problems. This

computer system would be composed of two parts. The first

part would be fixed in its architecture. The fixed part

would actually be an off the shelf general purpose

computer.[Ref 2:341

The second part of this system would be variable both

in terms of the individual components used and in the

interconnection of the components. Each of these separate

components could be any of the fundamental elements of a

regular computer such as flip-flops or shift registers. In

addition to the individual elements, there would be a

library of frequently used substructures that are hardwired

combinations of individual elements. Each of the individual

elements and substructures could be connected together in a

variety of ways within the variable portion of the

system.[Ref 2:34-35]

9

The significance of this paper is that it is the

first to mention variable connections between elementary

circuits within a computer. The computer system described

in this paper is apparently not dynamic, but the basic ideas

for a variable architecture computer are expressed.

The next paper reviewed was "Parallel Processing in a

Restructurable Computer System." This article describes the

Fixed Plus Variable computer system as it was being built at

UCLA.[Ref 3:747-755]

In addition to the fixed and variable portions

described above, a supervisory control unit has been added

to the design. This control unit is built in several levels

where each level exercises control over a certain type of

operation. For instance, the lowest level executes the

lowest level single action such as arithmetic and logical

operations. The next higher level executes the elementary

functions such as complex arithmetic and matrix operations.

This level uses all of the operations defined at the lowest

level in order to perform its functions.[Ref 3:749-7501

10

Intermediate levels may exist which would execute

higher level functions. Each level defines its own

functions using the functions defined at all levels beneath

it.[Ref 3:750]

The highest level of control is the supervisory

level. This level performs the following special functions:

1. Controls execution of all computations in the

fixed and variable portions

2. Coordinates the information exchange between the

fixed and variable portions

5. Performs interlocking functions necessary for

parallel processing

[Ref 3:750]

In addition, the control units on each level have the

following functions:

1. Sequence through each state required to perform

the necessary operation.

2. For each state, perform the necessary commands,

using the functions defined at the lower levels.

3. Generate the next sequential state.

[Ref 3:750-751]

11

Kartashev and Kartashev

The most important articles found were a series of

articles written by Steven I. Kartashev and Svetlana P.

Kartashev. Over a period of several months they have

published the details of their design for a dynamic computer

architecture that has many of the attributes that this

thesis is trying to achieve. The content of some of the

articles overlaps so only the ones required for an all

inclusive design are included here. The first of these

articles is "A Powerful LSI Metacomputer System with Dynamic

Architecture for Simulation of Complex Problems."[Ref

5:483-488] It discusses a dynamic computer architecture

that could be used to speed up the calculations for

distributing electric power from a grid of power generating

plants.[Ref 5:488]

The dynamic architecture computer described in this

article is composed of a number of "dynamic computer

groups." Each group is identical to every other group in

that they all contain the same elements. Each group can

function independently or in conjunction with other groups

to form a larger group.[Ref 5:483-484]

12

In addition to each group being identical, each

individual group contains, within itself, a number of

identical sets of elements. Each of these elements consists

of a processor unit, a memory unit and an input/output

unit. Each element can therefore be thought of as a simple

computer. These elements can also function independently or

in conjunction with other elements in its own group. The

elements within a group are connected together so the data

can be passed either left and right betwepn the elements or

only between the memory and its associated processing unit.

Each group has a monitoring unit, called a %' monitor, which

controls the interconnections between the individual

elements.[Ref 5:483-486]

The simple computers in this case are all 16 bits

wide and have a 16 bit wide memory. These simple computers

may be dynamically linked together through the connecting

units to form wider computers in multiples of 16 bits. Each

computer can process data concurrently with the computers

formed by the other elements.[Ref 5:485-486]

Obviously an arrangement such as this could make the

memory access quite complicated. This design solves some of

the problems by making the memory access both serial and

13

parallel. When two elements are connected together to form

one 32 bit computer, each 16 bit portion accesses the same

memory location in its 16 bit memory. The connecting unit

described above is in the no pass mode so that the data goes

from the memory to its associated processor unit.[Ref 5:484]

Instructions, however, are stored in consecutive

locations within one memory unit. When an instruction is

obtained from a location in one of the memory units, it is

passed either left or right through the connecting unit to

all of the Qf1 ected processing units. A single program may

be stored in more than one memory unit. Execution control

is passed to the instruction strear e next memory by a

special jump instruction.[Ref 5:485]

The article "Designing LSI Modular Computers and

Systems" [Ref 6:1-6] elaborates on this basic design by

discussing the V monitor in further detail, by discussing

the principles of design of the operating system and by

introducing the concept of program universality.[Ref 6:1]

The V monitor is the control unit for each dynamic

computer group. It controls the transition between states

and resolves conflicts of requests for new configurations by

14

the programs. Task execution within each element is

concluded by a STOP instruction which informs the monitor

that that resource is now free and available for

reassignment.[Ref 6:5-7]

The operating system is composed of three basic

programs. The assignment portion is the first to see the

user program. It breaks the user program into segments of

known bit size, organizes these segments into tasks of

common bit size, and then assigns the hardware resources

needed to run each task. The second portion of the

operating system is the local monitor which runs in the V

monitor of each group. Its functions have already been

described. The third portion is the central monitor program

which runs in the system's control computer.[Ref 6:8-9]

The central monitor program manages the resources of

the entire system. It acts much like the local monitor does

only on a system wide basis. Its tasks are to prioritize

all requests for transition of the entire system, keep track

of and specify each group's ability to transition into new

groups, and it interrupts lower priority programs and

obtains the necessary resources for higher priority

programs.[Ref 6:9]

15

The third important item in this article is the

introduction of the concept of program universality. This

concept is essential to the capability to perform multiple

architecture switches. The principal concepts are:

(1) Instructions store no codes or constants which

change their meanings when the same program is

computed by different size computers

(2) Instruction size is unique and independent of

computer size

(3) Addresses in the instruction fields remain

unchanged when moving programs from computer to

computer

[Ref 6:9]

The functioning of the operating system is elaborated

further in the article "Dynamic Architectures: Problems and

Solutions."LRef 7:26-40] Any operating system for dynamic

architectures must have two additional functions:

(1)It must construct a diagram of the computer sizes

needed

(2)It must flowchart the architectural states and

assign a priority for the transitions

The operating system, as conceived in this article, contains

additional subsytems to accomplish this task. Previous

16

articles divided the monitor system into three parts. This

article combines the functions of the monitor system into

one subsystem.[Ref 7:35]

The basic tasks of the assignment subsystem were

described above. That is, it takes the source code and

organizes it into specific bit sized pieces and inserts the

transition instructions. This process is done in four steps

as follows:

1. Break the source statements into nodes where the

beginning and end of each node occurs at a control

statement.

2. Find the maximum bit size of all computations.

Algorithms are given in this article to find these maximums.

3. Use the maximum bit size of the computations in

the node to establish the maximum size of the computer

needed to execute that node.

4. A two axis diagram of bit sizes is built. The

horizontal axis represents the number of graph nodes and the

vertical axis represents the computer bit size for each

node.[Ref 7:35-38]

The next article in the series, "LSI Modular

Computers, Systems, and Networks" [Ref 8:7-15] is an

17

introduction to a special issue of "Computer" magazine

published by IEEE. The importance of this article to this

discussion is the definition of the terms Static

Architecture, Dynamic Architecture, and Reconfigurable

Architecture.[Ref 8:7-9]

Static architecture allows no software controlled

variations. Reconfigurable architecture allows partially

software controlled variations in the module's

interconnections. Dynamic architecture allows complete

software controlled reconfiguration.[Ref 8:9]

"Software Problems for Dynamic Architectures:

Adaptive Assignment of Hardware Resources" [Ref 9:775-780]

expands the discussion of functions of the assignment

subsystem. The four steps mentioned earlier as being done

by the assignment subsystem are now looked at from a

different perspective. These tasks are divided into three

topics and discussed in detail. These three topics are

construction of a program graph, diagram of hardware

resources, and assignment of the DC group resource among

programs.(Ref 9:775]

18

The basic unit of construction of a program graph is

the node. The construction of a node was discussed

previously as being all of the statements between two

consecutive control points. Control points are statements

where program execution forks or joins. The maxim m bit

size of each node is calculated by the following procedure:

1. Each variable is analyzed to determine its maximum

bit size

2. Each statement is analyzed to determine the

maximum bit size required for its calculations

3. Each calculation is analyzed to determine the

maximum intermediate bit size required. The maximum

intermediate bit size is that size required to

contain the intermediate results.

Formulas are given in the article for determining the

maximum bit size and the maximum intermediate bit size for

various arithmetic expressions.[Ref 9:775-777]

Once the program graph is constructed, the diagram of

hardware resources can be made. This is a four step process

which uses the data derived by the procedures described

above. The first step is to construct the bit size

diagram. The horizontal axis of this diagram represents the

nodes of the program graph. The vertical axis shows the two

19

bit size parameters, the maximum bit size and the maximum

intermediate bit size.[Ref 9:777]

The next step is to adjust the bit size diagram to

eliminate excessive changes in computer sizes. The result

of this is a computer size diagram th3t is ordered in the

sequence of computer sizes required.[Ref 9:7771

The third step is to determine the time required to

execute each task in its given computer size. This can be

done by breaking down each statement into its machine code

equivalent. The number of clock periods for each machine

instruction is based on the computer size and memory access

speed. This value is multiplied by the number of times it

is iterated to find the total time for that instruction. The

total time for all instructions in that node are added

together to get the total time for that node.[Ref 9:777]

The fourth step is to construct the hardware resource

diagram for the entire program. This is called the

P-resource diagram. It is a graph where the time of

functioning of each task is plotted on the horizontal axis.

The upper portion of the vertical axis is plotted with the

computer sizes. The lower portion is plotted with the

dimensions of the data arrays.[Ref 9:777-778]

20

The third topic of this article is the assignment of

the DC group resources among the programs. This is

accomplished by combining all the P-resource diagrams

(output from stage 4 of the hardware resource diagram) into

Computational Element (CE) resource diagrams and the Memory

Element (ME) resource diagrams.[Ref 9:778,780]

The CE resource diagram plots the maximum bit size on

the vertical axis and the time for executing each task is

mapped along the horizontal axis. The construction of this

diagram is done in accordance with the program priorities.

That is, the high priority program segments are plotted

first. The result is a diagram that maps all of the

computer resource requirements for the programs to be

executed. [Ref 9:778-779]

The ME resource diagram is built using the memory

size portions of all P-resource diagrams. All data arrays

are assigned first because they must use the same location

in all memories. The remaining spaces are filled in with

programs and program segments since execution can jump from

memory to memory. The result is a graphic picture of the

memory space required to execute the subject programs.[Ref

9:779-780]

21

The concept of dynamic architecture is extended to

pipeline systems in the article "Adaptable Pipeline System

with Dynamic Architecture."[Ref 10:222-230] This article

proposes a design for a pipeline computer system that uses

the same Dynamic Computer (DC) groups that were presented in

previous articles. Each stage of the pipeline is made from

a single DC-group. In addition, each stage has its own

register set for storage of temporary results.[Ref

10:222,225]

This dynamic pipeline architecture solves some of the

problems of ordinary pipeline architectures by allowing the

instruction to exit the pipeline when execution is completed

even though more stages remain in the pipeline. Also, each

stage has a variable execution time for each instruction

being executed.[Ref 10:224]

The next paper in this series, "Adaptation Properties

for Dynamic Architectures," [Ref 13:543-5561 introduces a

concept called adaptation parameters. These parameters

allow the user program to be evaluated against alternative

architectures. These evaluations will select the optimum

architecture for each program. Equations and examples for

each calculation are given in the article.[Ref 13:543-556]

22

The first of these parameters is the Speed of Bit

size Adaptation (SBA). This parameter is the time that it

takes the computer to switch from one architectural state to

another. This number is a factor of the switching

configuration and the technology used to implement the

switch.[Ref 13:544-545]

The second parameter is the Precision of Bit size

Adaptation (PBA). This parameter represents the time lost

in executing instructions in a machine size too large for

that particular instruction. Each instruction is likely to

require a different size computer. Therefore, in order to

minimize the switches between states, instructions are

grouped into tasks of similar computer length and these

tasks are then executed in a fixed computer size. However,

there will still be instances where an instruction, within a

given task, could have been executed in a smaller computer.

The difference in time between its execution in its assigned

task and the time it would have taken to execute in a

smaller machine is a loss of efficiency. The sum of all of

these losses throughout a program is the PBA.[Ref 13:545]

The next parameter is called the Resource Utilization

Factor (RUF). This parameter is computed for each state

25

that the system is in during the execution of a program. In

each state, the system assumes a number of computer sizes

that execute concurrent instruction streams. When a task is

executed in this state, some of the processes finish before

others and the resources of that path must be idle. This

idle time is used to calculate the RUF.[Ref 13:545-546]

In addition to dynamic architecture, it is also

conceivable that instruction sets can be dynamically

changed. The difference in execution time of one

instruction set over another for the same program is a

parameter called Speed-up on Program Adaptation (SPA).

Related to this is a parameter that computes the gain in

speed obtained by implementing an often performed

instruction stream into a single executable instruction.

This parameter is called the Speed-up by Instruction

Adaptation (SIA).[Ref 13:546-547]

There is a parameter that measures the efficiency

with which a dynamic architecture adapts to array

processing. This factor is called the Array Adaptation of

Equipment (AAE). It is the percentage of equipment left

over when a computer size is selected that is larger than

the operands. It is similar to the factor PBA but it is

specifically for array structures.[Ref 13:547-548]

24

There are numerous factors which must be considered

in adapting a dynamic architecture to a pipeline

configuration:

Adaptation to parallel streams

Adaptation on operation sequences

Adaptation on the number of pipeline stages

Adaptation to operation time in each stage

Adaptation on conditional branch

These factors are also described in this article but since

they deal with pipeline architecture, there is no need to

elaborate on them here.[Ref 13:548-550]

The final parameter is the time that it takes to

adapt a program so that it may be executed. This is called

the Time of Program Adaptation (TPA). The ideal situation

is a TPA of zero or no time required to adapt the program.

This occurs with all programs constructed under the rules of

program universality. Program universality was presented in

detail above. Its important points are:

1) all instruf-tion codes have the same meaning

regardless of the computer size

2) unique instruction size

3) serial consecutive storage of instructions in

memory

25

4) parallel storage of data in memories.

However, complete program universality is not always

practical. Therefore, a certain amount of time is usually

required in order to adapt a given program to a new

architecture. This time is called the TPA.[Ref 13:550]

This article also departs from the previously defined

operating system by adding an additional system. The

adaptation system is now the first system to process the

user's program. Its job is to find the optimum instruction

set for executing this program. The other two portions of

the operating system, the assignment and the monitor, remain

the same.[Ref 13:550]

The article "A Multiccputer System With Dynamic

Architecture" [Ref 11:704-721] includes more detail about

the function of the monitor system. Specifically, it deals

with those things which must be done in performing the

switch from one architectural state to another. The

previous articles divided the monitor system into sections

based on where in the computer system each portion was

located (i.e. local monitor, V-monitor, etc.). This article

discusses the monitor system in functional areas. They are:

1) Task synchronization

26

2) Priority analysis

3) Storage of variable control codes

4) Organization of the architectural switch to a new

state,[Ref 11:706,715]

The first two functions are self explanatory. They

are performed by the V-monitor during execution of programs

in the dynamic computer. These two processes handle the

reallocation of resources in real-time. Task

synchronization determines when the resources of a

particular CE are free and ready to be transitioned.

Priority analysis is required in order to determine which

tasks or programs will get the available resources for its

processing.[Ref 11:715]

Storage of variable control codes is done by the

Central Monitor each time a new DC group is formed. These

variables are written into each individual CE's memory in

order to switch the architecture to a new state. The

control codes for all CE's for all possible configurations

are stored in one of the memories where they can be accessed

by the L propriate V-monitors. These codes are used by the

system to denote the current configuration and so each CE

knows how it is supposed to be configured.[Ref 11:715-717]

27

The next article "Adaptable Architectures for

Supersystems" refines the details of the monitor system. Its

discussion of the monitor system divides the function into

four different actions. They are:

1)Checking the readiness of the resources requested

for reconfiguration

2)Task synchronization

3)Priority analysis

4)Architectural reconfiguration.[Ref 15:34-35]

The total monitor system operation as described in

this article is not different from the previously presented

concepts. However, there are more details given on the

implementation of these functions.[Ref 15:34-35]

The final article of interest by these authors is

"Distribution of Programs for a System with Dynamic

Architecture." It is important mainly because of its

detailed presentation of an algorithm for constructing a

program graph.[Ref 12:490-492]

A program graph consists of a series of nodes,

connected by execution flow lines. Nodes can be simple or

complex and may also be iterative or non-iterative. Simple

28

nodes have only one exit point for control to pass to the

next node. Complex nodes contain some type of decision

statement and therefore have more than one exit point. For

a complex node, the particular node to which control passes

next is determined by some type of decision statement

internal to that node. All decision statements are

considered control statements.[Ref 12:489]

Iterative nodes are executed some number of times

specified by a parameter called Z. Non-iterative nodes are

executed only once in the course of execution of that

particular program path.[Ref 12:490]

An important part of the algorithm which does not

become a part of the graph is the node cross reference

table. This is a two column table that is used to keep

track of which nodes need to be connected at a later time to

other nodes. Column one contains a pointer to the control

statements. Column two contains pointers to all of the

statements being referenced by the control statement.[Ref

12:490]

The algorithm divides all of the statements in a

user's program into five types as follows:

29

Type 1: A non-control statement that is not

referenced by any other statement.

Type 2: A statement referenced by another control

statement

Type 3: All control statements except the DO

statement

Type 4: The DO statement

Type 5: The DO reference statement or the DO

object.[Ref 12:490-492]

This algorithm is illustrated by the flowchart in

Figure 2-2. The result of using this algorithm on a program

is a flow graph that shows all of the executable program

statements and all of th, possible execution paths.[Ref

12:491]

Type 1 statements become part of the previous node

unless the previous node contains a control statement. If

the preceding node is a control statement node, then the

type I statement in question is made into a new separate

node. Consecutive type 1 statements are collected together

by the algorithm into a single simple node.[Ref 12:490]

30

00

0 0

CL

Lj. V

00

0~LL

11

Type 2 statements are the destination of one or more

control statements. They automatically become a separate

node. If the control node that references the type 2

statement has already been assigned to a node, then the

connecting link can be made. However, the information must

still be stored in the event that another control statement,

that has not yet been encountered, also refers to that

statement. If no control statements have been encountered

that refer to the type 2 statement in question, then that

information is also stored so that the link can be made

later. Type 2 statements also form simple nodes.[Ref

12:4901

Type 3 statements are also assigned to a separate

node. The node cross reference table is updated to reflect

any links that can now be made with statements previously

assigned to nodes and also with references to statements not

yet assigned to any nodes. Note that a type 5 statement can

also be a type 2 statement because it can be the destination

of another control statement. Since all type 3 statements

automatically become separate nodes anyway, this problem is

solved by merely updating the table. Type 3 statements

always form complex nodes.[Ref 12:490]

52

Type 4 statements are handled similar to the other

control statements by assigning them to a separate node.

The difference is that the nodes containing type 4

statements are simple nodes instead of complex nodes. The

statement referenced by the DO statement always follows the

DO statement itself so the end of the loop isn't quite as

difficult to track. However, it is still necessary to

determine if it is also a type 2 statement. Here again, as

in type 3 statements, it does not represent a special

problem since it is already a separate node.[Ref 12:490-492]

Type 5 statements mark the end of the DO loop and as

such are formed into a separate complex node. However, if

this statement is the only statement in the range of the

do-loop then a separate empty or null node is set up between

the nodes formed by the type 4 and the type 5

statements.[Ref 12:490-492]

The algorithm functions by analyzing the executable

statements of a user's program. Any comments or data

declarations are not analyzed. The flowchart consists of 26

steps, each of which are detailed below.

Step I forms the first node from the first executable

statement.

33

Step 2 gets the next executable statement and

determines if it is a control statement (type 3 or 4). If

the next statement is a control statement, the algorithm

goes to step 8. If it is not a control statement, the

algorithm goes to step 3.

Step 3 determines if the current statement has been

referenced by another statement. If it has not, then it is

a type 1 statement and the algorithm goes to Step 4. If it

has been referenced previously, then the algorithm goes to

Step 18.

Step 4 retrieves the previous statement from the

program.

Step 5 analyzes the previous statement to determine

if it was a control statement. If the previous statement

was a control statement, then the algorithm goes to step

25. If it is not, then the algorithm goes to step 6.

Step 6 includes the current statement into the same

node .%s the previous statement and then passes control to

step 7.

Step 7 determines if there are any more statements to

be processed. If there are more statements, the algorithm

goes back to step 2. If there are no more statements, then

the next step is step 26.

54

Step 8 is reached from step 2 if the current

statement is a control statement. Step 8 looks at the

current statement to determine if it is a DO statement. If

it is a DO statement, the algorithm goes to step 9. If it

is not a DO statement, then the algorithm goes to step 18.

Step 9 is reached either from step 8 above or from

step 14. Step 9 puts the current statement into a new node

and then passes the algorithm to step 10.

Step 10 checks the following statements to see if the

reference statement of the DO loop is the same as the last

statement in the DO loop range. If it is the same, then an

empty node is needed and the algorithm goes to step 13. If

it is not the same, then the algorithm goes to step 11.

Step 11 scans the following statements to find the

range statement and then passes control to step 12.

Step 12 assigns the range statement found in step 11

to a separate new node. The algorithm then goes to step 14.

Step 13 is reached from step 10 when an empty range

node is needed. This step creates the empty node and then

goes to step 14.

Step 14 is reached from either step 12 or step 13.

Step 14 looks at the next statement to see if it is also a

DO statement. If it is, then the next step is step 9. If

it is not, then the next step is step 7.

35

Step 15 is reached from step 20 if the current

statement is referenced by a DO statement. Step 15 finds

the number of other DO statements that reference the current

statement and passes the algorithm to step 16.

Step 16 creates a separate node for each additional

DO statement so that each DO loop has a distinct beginning

node and ending node. The next step is step 17.

Step 17 connects each of the nodes created in step 16

to the node of its respective DO statement. Step 17 then

passes control to step 7.

Step 18 is reached either from step 8 if the current

statement is a control statement but not a DO statement

(type 5), or from step 5 if the current statement is not a

control statement but has been referenced by another

statement (type 2). Step 18 creates a new node for the

current statement and then passes control to step 19.

Step 19 checks the node cross-reference table to see

if the current statement is there. If it is not, then the

next step is step 20. If the current statement is in the

table, then the next step is step 21.

Step 20 is reached from step 19 or from step 21.

Step 20 checks the current statement to determine if it is

referenced by a DO statement. If it is referenced, then the

algorithm goes to step 15. If it is not, then the next step

is 22.

36

Step 21 looks up the proper entry in the node

cross-reference table and connects the current statement to

the node that is referencing it. The next step is 20.

Step 22 connects the current node to all of the other

nodes that reference it or to the destinations in the node

cross-reference table if the current statement is a control

statement. The next step is 25.

Step 23 determines if all of the statements

referenced by the current statement have already been

assigned to a node. If they have, control goes on to step 7

to get the next statement. If not, then the next step is

24.

Step 24 updates the node cross-reference table by

putting one entry in for each unassigned statement. Then

the algorithm goes on to step 7.

Step 25 is reached from step 5 to handle the special

case of a type 1 statement that is preceded by a control

statement. In this case, step 25 sets up a new node for the

current statement and then goes on to step 7.

Step 26 is reached from step 7 if all of the

statements have been exhausted. Step 26 is simply the end

of the algorithm.[Ref 12:491]

37

Dimond and King

The next article of interest is "A Flexible

Development System for Microprogrammable Microprocessors."

This article describes an expandable system based on

bit-slice technology. This system contains a variable

number (up to sixteen) of Register and Arithmetic Logic

Units (RALUs) and an equal number of Microprogram Control

Units (MCUs). In bit-slice technology, one RALU and one MCU

can be combined to make one microprocessor. However, in

this system, they are not connected together in a dedicated

fashion. The inputs and outputs of each of these devices

are passed through an interface unit that is controlled by a

general purpose host computer.[Ref 1:159-161]

User programs are written in BASIC and compiled in

the host computer. The individual operations to be

performed by the BASIC program are matched to microprograms

that are to be executed in the microprocessors. Each

microprogram represents one instruction. The host computer

also contains these microprograms in its main memory and

feeds them to the MCUs for execution.[Ref 1:162-164]

38

This system is dynamic in the sense that the host

computer selects the RALU and the MCU that are going to

execute each microprogram. Since the host computer also

contains the microprograms, the instruction sets executed by

the microprocessos can vary during execution.[Ref

1:161,164]

Rauscher and Agrawala

"Dynamic Problem-Oriented Redefinition of Computer

Architecture Via Microprogramming" discusses a technique for

architecture redefinition using customized microprograms.

This article establishes execution time and program size as

the performance to be optimized in constructing the

microprograms. The algorithms presented by the article

define procedures for automatically doing the following:

a) analyzing, at compile time, the intermediate

language representation of a program to determine

which sections can be made into primitives and

represented by a single "machine language"

instruction.

b) generating, at compile time, the microinstructions

to interpret these "machine language" instructions.

39

These algorithms take advantage of the fact that, even for

large programs,

a) instructions generally fall into certain sequences

of operations and

b) small parts of a program account for most of its

execution time.[Ref 14:1007-1008]

Each object program is provided with its own set of

microcode that is loaded into the control store of the

computer just prior to execution. This technique has an

obvious shortcoming in a multiprogramming environment as the

microcode must be changed at each context switch. However,

for programs that consume large amounts of processor time,

the use of the processor itself can be greatly

optimized.[Ref 14:1007]

Fuchs and Johnson

The article "An Expandable Multiprocessor

Architecture for Video Graphics" proposes a computer

architecture that is optimized for computer processing of

video images. The computer system described is composed of

a central controller and numerous individual processing

40

units. Each processing unit does all of the processing for

a small subset of the total pictu e area.[Ref 4:64]

This architecture is not dynamically alterable, not

do the processors have a variable word length. However, it

does illustrate an application where numerous processors are

executing independent calculations for a single application

with a time coordinated solution. It also is an

architecture that is optimized for the types and quantities

of calculations involved in computer image processing.[Ref

4:58-59]

41

III. Computer Generated Imagery Software

Computer Generated Images

Computer image generaticn is tne process of taking

digitized descriptions of objects and creating a visual

scene in the proper perspective for display on a CRT

screen. The objects to be displayed are terrain features

(mountains, valleys), static objects (builir.gs, bridges),

and moving objects (airplanes). Every three dimensional

object to be displayed is divided into a finite number of

flat surfaces. This means that round objects must be

approximated by dividing the curved surface into some number

of flat surfaces. Each flat surface is then defined by

identifying the endpoints of the lines that describe or

define each edge. These lines are called edges and the flat

surfaces are known as faces. Any regular rectangular

object, such as a building, would be made up of six faces

(bottom, top and four sides).

If no other information except the definition of the

edges were given, the building would appear hollow and

transparent. In other words, the inside walls would be

42

visible from outside the building. When color information

is added to the faces, a dilemma occurs. The walls are now

opaque and there is confusion as to which surface is

visible. This contradiction is resolved by assigning a

priority to each face. The priority is assigned based on

the position of fhe surface with respect to the viewer. A

face that is obscured by another face is given a lower

priority than the face that is closer to the viewer. Any

portion of a high priority surface that lies between the

viewpoint and a low priority surface will mask out that

portion of the low priority surface.

It is the job of the computer image generation system

t. take the description of all items in the data base and

determine which edges are in the field of view (FOV). The

system then calculates the perspective of each visible edge

from the viewpoint. This edge is then projected onto the

viewing window. If any of the edges extend outside the

viewing window, they are clipped off to the edge of the

viewing window. Sophisticated image generation systems also

perform gradual shading on the flat sides of the curved

surfaces to present a more realistic looking curved

surface. Other possible enhancements include sun angle

effects such as shadows and the application of texture to

selected surfaces.

45

The viewing window is divided up into raster lines

and the raster lines are divided up into picture elements.

The final step in the image generation process is to convert

each surface to its corresponding picture elements and then

to define a color for each element.

Scene Generation Software

The scene generation software used in this study is a

part of a much larger system of software called the Data

Base Development System (DBDS). The flow diagram for the

system is shown in Figure 3-1. The purpose of the DBDS is

to create, modify and test CGI data bases in a non-real-time

manner. It provides the full range of data base creation

capabilities allowing all but the final verification to take

place independent of the video hardware. Processing can

take place interactively, allowing the user to vary

parameters and view the results as the data base is being

created. Once the data base is tested and verified, it is

used in a real-time system for generating dynamic visual

scenes.

44

CERTIFYACTIVE

SYSTEM

Fiur -! Dt BseDveopet yse D~ga

45 C Mbe

The processing done by the scene generation software

in the DBDS is done by hardware in the real-time system.

The scene generator software in the DBDS simulates the

actual hardware in the real-time system.

The scene generation system ib comprised of six

different parts, each with a specific function. The

functions of each processor is as follows:

Face Compression

Compresses the data describing each face into a

format 'Lhat is more efficient for the remaining

calculations

Controller

1. Reads input data (Visual Parameter File)

2. Reads data base files (Environment File, Priority

Data File)

3. Reads Fixed data files (color trade, light

parameter table, texture map)

46

Frame 1

1. Computes the direction cosine matrices required

to relate earth, viewpoint and model coordinate

systems. Figure 3-2 illustrates the coordinate set

definition

2. Computes the constants for the view window (to

offset the viewpoint matrices to upper left-hand

window corner)

3. Computes relative position of the viewpoint to

the region.

4. Tests each data base region to see if it lies in

the field of view (FOV)

5. Tests each region in the field of view (FOV) to

define the level of detail

6. Computes for static data

a) relative viewpoint to subregion centroid

b) sun vector relative to the subregion

c) matrix for rotating static subregion data to

the view window

7. Computes for moving models

a) moving model origin

b) moving model direction cosine matrix

47

VIEWPOINT V. P

Y~X .(EAAT)

S WINDWMY.IN ODEH)

ww

NAI m (EAST)

MOIG OE

7w

YG

X GEOCENTRIC

Figure 3-2: Coordinate Set Definition
48

c) matrix to rotate moving model data to the

view window

d) sun vector rotated to the moving model

coordinate system

Frame 2

1. Reduces the scene data to raster line and line

element on the display window

2. Lists the active faces (for use in determining

visual priority from the view point)

3. Calculates color and texture data for use in

Frame 3

Priority Processor

Generates a list of the priority numbers for each

face in the active face list.

Frame 3

1. Selects the best edges for each element in the

line

2. For each element in the line, calculates texture

shading coefficients

5. Calculates color intensities for each element in

the line

4. Outputs the line to the video hardware

49

Appendix A contains a summary of all of the modules

arranged alphabetically. For each module, there is a list

of all of the modules that it calls and a list of all of the

modules that it is called by. In addition, there is an

identifier that denotes which of the six major programs

contains or calls that particular module. The modules are

divided into application modules and system modules. The

application modules are those written specifically for a

particular application. The system modules are a part of

the operating system library and their source code is not

available. The system modules are not a part of this

analysis other than the reference to them in this appendix.

Appendix B contains a list of all of the application

modules with a short description of the function of each.

Each of the six programs in the scene generator

software executes independently. The disk files are used

for intertask communication and the COMMON areas are used

for intratask communication. The first program, called

FRAMEl, reads its input data from a disk file into COMMON

and then performs its functions. When FRAME1 finishes, it

writes all of its output data back out to a disk file to be

read in by the next process. This procedure is followed by

50

all of the subsequent processes until at last a scene is

output to the video hardware.

Required Data

There are two aspects of the software that are

important in this analysis. The first is the

characteristics of the variables and data being usea in the

programs. The second is the characteristics of the code

itself.

Characteristics of the Data. For purposes of the

following discussion, the term "variable" applies to all

memory positions used during execution that do not contain

instructions. All of the available information about the

variables used by the scene generator software can be found

from the sto age map at the end of the compiled listings.

This information includes the variable type (real, integer

or logical) and how much storage is allocated to it

(halfword, fullword, double). This measure of length is

rougher than what is ideally desired for this analysis

because it only gives the size allotted by the compiler.

This measure is usually given in halfwords (2 bytes) and

51

multiples of halfwords and is assigned by the compiler based

on information supplied by the programmer. The compiler

makes no attempt to minimize the amount of memory required

for each variable.

For example, if the FORTRAN compiler allows one full

word (4 bytes) for the storage of a variable, that means

there are 32 bits available. However, if that variable only

assumes values of 1 and 2 during execution then there are

many bits that are unused. These unused bits are exactly

what is to be avoided by using a variable architecture.

Additional information on the range of values

required for each variable could be obtained by printing the

value of each variable every time it is changed during

execution. This process would require recompiling each

module with additional output statements that directed the

values of interest to an off-line file. However,

recompilation of all modules is not feasible at this time

because of the quantity of additional software which would

have to be running also. Additional software would be

required in order to support all of those functions that lie

outside of the scene generator block in Figure 3-1. It is

outside the scope of this effort to convert and debug all of

this software.

52

Program Analysis. Each line of code in the software

can be classified as either an executable statement or a

non-executable statement. The non-executable statements are

those which do not generate any machine instructions. There

are three general types of non-executable statements.

The first type are comment statements which are

completely ignored by the compiler. The second type are

used by the compiler to structure and allocate memory.

Examples of this type include DATA, COMMON and DIMENSION

statements. The third type generate data which requires

some memory. An example of this type of statement is a

FORMAT statement.

The executing lines of code consist of data

manipulation and control type statements. Data manipulation

statements include all lines with an arithmetic operation,

or which assign a value to a variable, or which perform a

test on data. Examples of arithmetic operations are

addition (+), subtraction (-), and multiplication (*). A

value assignment is made with an equal sign (=). Examples

of tests which can be performed on data include Less Than

(.LT.) and Greater than or Equal to (.GE.).

53

Control statements direct the flow of program

execution between alternate paths. Control statements can

involve decisions as in the case of IF or DO, or they can be

unconditional like GOTO or RETURN.

The data required from the analysis of the scene

generator software includes the type and quantities of the

instructions being executed. This information is used to

establish the instruction set of the computer being

designed.

Software Analysis

The method used to analyze the code to collect this

data is described below.

Task 1: Compile all programs and subroutines.

Compiling each module produces a variable storage map. This

map shows the name, size and type of all variables used in

that module. This information is used to describe the

characteristics of the data that must be handled by the

dynamic computer system being designed.

54

Compiling the modules was not a straightforward

task. The modules were originally written to run on a

Systems Engineering Laboratory (SEL) computer. Later, they

were converted to run on an Interdata computer. Now the

source code is once again on a SEL computer. The process of

getting them to compile on the current computer system

required numerous changes to the source code.

When the programs were written to run on the original

SEL computer system, the COMMON data areas were put into

INCLUDE files that were combined with the rest of the source

code at compile time. However, the Interdata compiler did

not support the INCLUDE function. Consequently, when the

programs were converted to run on the Interdata computer, a

special preprocessor was written to perform the include

function. This processor created a temporary intermediate

file from the source code and a second file that contained

all of the INCLUDE files. This intermediate file was then

processed by the regular FORTRAN compiler.

Now that the programs are to be compiled on another

SEL computer, it was necessary to write a preprocessor to

perform the same function. It was not possible to simply

put the common definitions back into INCLUDE files since

55

some INCLUDE files now had the same names as some of the

modules.

The syntax of some of the Interdata FORTRAN

statements differs from the syntax of the same statements in

the SEL FORTRAN. These statements had to be changed in

order to get the modules to compile. These changes were in

the following three areas:

1. ENDDO. Both Interdata and SEL FORTRAN support the

same kinds of DO loops. However, the ENDDO or DO loop

termination is different. SEL DO loops all end with an

ENDDO or CONTINUE regardless of the type. Interdata FORTRAN

DO loops end with a different ENDDO based on the type of DO

loop involved. For example, DO FOR ends in ENDDO FOR.

2. IF. Interdata IF statements do not require the

use of the word THEN following the IF clause. SEL FORTRAN

requires the word THEN for proper syntax.

3. Hex Data Declarations. Interdata FORTRAN supports

three types of hex data declarations, X, Y, and Z depending

on the conditions under which the data is used. SEL FORTRAN

only supports the X type.

56

Task 2: Compile a list of all variables and their

attributes. The variables used by each module come from

four sources. The first source is the local variables that

are used only within that module. The second source is the

common variables that are shared by other modules and are

identified by placing them in a separate area accessible by

all of the modules that need them. The third type are

temporary variables that are generated by the compiler to

hold intermediate results. The fourth source are the

constants required for calculations. Only the first two

types are of interest here.

The list of variables is constructed with the

variable name, the location of the variable, the variable

type, tile var.able size, the variable dimension and the

total memory required for storage of all positions of the

variable. There may be more than one variable in the list

with the same name because different modules can have local

variables with the same name with no conflict. Modules can

even have local variables with the same name as variables in

common as long as that common is not contained in the

subject module. The only requirement is that there are not

two variables in the same module with the same name.

57

The location of the variables is given in the list in

order to distinguish between variables of the same name. If

the variable is in common, the name of that common is given

as the location. If the variable is a local variable, the

name of the module is given as the location.

The variable type can be integer, real, character or

logical. Integer variables in the table are denoted by the

letter I in the type column. Likewise, real variables are

denoted by R, character by C and logical by L. The variable

size is given in increments of bytes. The type and size

combinations encountered are as shown in Table 3-1.

Table 5-1: Valid Variable Type and Size Combinations

Type Size
Integer 2 bytes
Integer 4 bytes
Real 4 bytes
Real 8 bytes
Logical 4 bytes
Character 1 byte

Each variable is identified in the variable storage

map at the end of each module's listing as being either a

variable or an array. Arrays are identified in this list by

the word ARRAY in the usage column. The dimension of each

variable is determined from the definition of the variable

58

in the'source code. Two dimensional arrays are converted to

a single dimension by multiplying the two dimension values.

The total memory required for the storage of each variable

is calculated by multiplying the dimension by the size.

Six lists are constructed, one for each of the six

main parts of the scene generator software. Each list is

compiled by extracting the pertinent information from the

variable storage map at the end of each listing. The list

for each part of the scene generator software is started

with the listing for the main program of that part. Each

list is then completed with the variable storage map of all

subordinate modules of that part of the scene generator.

Each variable in each variable storage map is compared to

the variables in the appropriate list. Variables from the

subordinate modules are added to that list if:

1. they have a different name from all the other

variables that are already in the list or

2. they have the same name as a variable that is

already in the list but are in a different location.

The complete tables are given in Appendix C. The data is

summarized in Table 3-2 and Table 3-3.

59

Table 3-2: Summary of Variable Data

Program Variable Totals Percent
Name Type Size Variables Dimension Total Variables Storage

FACCOM Integer 2 2 14,096 28,192 3.45 57.56
Integer 4 53 5,191 20,764 91.38 42.40
Real 4 1 1 4 1.72 0.01
Real 8 2 2 16 3.45 0.03
TOTAL 58 19,290 48,976 100.00 100.00

FRAME1 Integer 2 13 1,838 3,676 2.77 10.31
Integer 4 180 3,838 15,352 38.30 43.07
Logical 4 16 47 188 3.40 0.53
Real 4 248 4,071 16,284 52.77 45.69
Real 8 13 18 144 2.77 0.40
TOTAL 470 9,812 35,64-4 100.01 100.00

FRAME2 Integer 2 25 4,128 8,256 3.65 6.38
Integer 4 335 18,691 74,764 48.98 57.79
Logical 4 38 69 276 5.56 0.21
Real 4 283 11,500 46,000 41.37 35.56
Real 8 3 10 80 0.44 0.06
TOTAL 684 34,198 129,37 100.00 100.00

FRAME3 Character 1 8 8 8 0.48 0.00
Integer 2 435 54,872 109,744 26.533 41.65
Integer 4 807 24,318 97,272 48.85 36.92
Logical 4 14 76 304 0.85 0.12
Real 4 373 14,002 56,008 22.58 21.26
Real 8 15 19 152 0.91 0.06
TOTAL 1,65 93,295 263,488 100.00 100.01

SC3EN Integer 2 10 1,963 3,926 4.81 6.95
Integer 4 129 6,23 25,052 62.02 44.34
Logical 4 12 43 172 5.77 0.30
Real 4 55 6,821 27,284 26.44 48.29
Real 8 2 8 64 0.96 0.11
TOTAL 208 15,098 56,49 100.00 99.99

PRIPRO Integer 2 65 60,757 121,514 20.31 77.28
Integer 4 238 7,824 31,296 74.38 19.90
Logical 4 1 32 128 0.31 0.08
Real 4 11 1,062 4,248 3.44 2.70
Real 8 5 7 56 1.56 0.04
TOTAL 320 69,682 157,242 100.00 100.00

60

Table 3-3: Total Variable Data

Variable Totals Percent
Type Size Variables Dimension Total Variables Storage

Character 1 8 8 8 0.24 0.00
Integer 2 550 137,654 275,308 16.21 39.83
Integer 4 1,742 66,125 264,500 51.36 38.27
Logical 4 81 267 1,068 2.39 0.15
Real 4 971 37,457 149,828 28.63 21.68
Real 8 40 64 512 1.18 0.07
TOTAL 3,392 241,575 691,224 100.01 100.00

The data in Table 3-2 is arranged by major program.

The first column of the table is the major program name.

The second column is the variable type and the variable size

in bytes. The next set of columns gives totals for the

number of distinct variable names, the sum of all the

dimensions of those variables, and the total memory required

for storage of those variables.

The last set of columns shows two different pieces of

information concerning the relative occurrence of the

separate types of variables. The first of these columns

shows the percent of occurrences of that type of variable to

the total number of distinct variables. It is calculated as

the ratio of each value in the Variables column to the total

of that column. The second column of this set shows the

61

percent of memory that type of variable occupies in relation

to the total memory for that module.

It is important to note that there is a subtle

difference in meaning between the total number of distinct

variable names and the total of their dimensions. The first

line of Table 5-2 illustrates this point. The program

FACCOM contains only two variables that are two byte

integers. However, their total dimension is 14,096.

Instructions in FACCOM only have to deal with two variables

but the total memory requirement for them is over fifty

percent of the total memory of that program. This means

that the handling of the dimension function, or indexing, is

the significant factor in the processing required to

manipulate these variables.

Task 5: Itemize instructions by function and

variable size. The individual lines of code of each module

are analyzed to determine what functions are being

performed. This data is used to determine what types of

machine instructions would be required in order to perform

those functions.

62

Each operation in an executable statement is

categorized according to its function. If data manipulation

is involved, then the operations are further broken out

according to the size and type of the data involved. The

result is a count of the total number of individual

operations (integer additions, subtractions, etc.) performed

within that module.

A large number of the source statements contained

operations involving more than one size or type of variable

(mixed mode operations). In order to make the data

consistent across each operation, the standard rules for

FORTRAN parsing were used. That is:

1.) all statements are evaluated from left to right

2.) multiplication and division take precedence over

addition and subtraction

3.) in operations involving two different types of

variables (integer, real, etc.) each variable is

first converted to the higher order type.

In addition, other assumptions were made in order to

simplify the data collection and the resulting design:

63

1. Dimensioned variables were treated like regular

variables. That is, unless an arithmetic operation occurred

within the index, no special operation was counted. The

assumption is that the instructions being designed into the

dynamic architecture computer would have the capability to

handle variable indexing without any additional overhead.

If an arithmetic operation was performed within the index,

then that arithmetic operation was counted. For instance,

the variable MAP(2,I-7) contains a subtraction operation on

a four byte integer variable that would be counted as a

separate operation. However, the indexing of the variable

MAP would not be counted as an operation.

2. Assignment operations are considered to be cf the

same size and type as the size and type of the variable on

the left side of the assignment sign.

The complete data tables are in Appendix D. The data

is summarized in Table 3-4, Table 3-5, and Table 3-6.

Table 3-4 contains the total number of occurrences

for each operation for each type of variable. The first

column contains the symbol or description of the operation

being tabulated. The second column contains the number of

64

Table 3-4: Itemization of Variable Operations Data

Operation 1*2 % 1*4 % L % R*4 % R*8 %

+ 206 5.19 510 11.21 0 0.00 232 7.85 11 10.19
- 46 1.16 1U 3.52 C 0.00 253 8.56 25 23.15
* 39 .98 71 1.56 0 0.00 329 11.14 19 17.59
/ 3 0.08 39 0.86 0 0.00 101 3.42 18 16.67
** 0 0.00 2 0.04 0 0.00 30 1.02 8 7.41
- 1599 40.29 2327 51.15 71 13.76 1312 44.41 19 17.59

Arith IF 4 0.10 3 0.07 0 0.00 0 0.00 0 0.00
Logic IF 770 19.40 533 11.72 282 54.65 251 8.50 2 1.85

ELSEIF 59 1.49 34 0.75 4 0.78 13 0.44 2 1.85
.EQ. 622 15.67 322 7.08 0 0.00 38 1.29 0 0.00
.NE. 325 8.19 124 2.73 0 0.00 15 0.51 0 0.00
.GT. 63 1.59 172 3.78 0 0.00 91 3.08 0 0.00
.LT. 23 0.58 52 1.14 0 0.00 124 4.20 0 0.00
.GE. 20 0.50 26 0.57 0 0.00 56 1.90 0 0.00
.LE. 8 0.20 33 0.73 0 0.00 18 O.61 4 3.70

.AND. 123 3.10 72 1.58 9 1.74 73 2.47 0 0.00
.OR. 59 1.49 69 1.52 139 26.94 18 0.61 0 0.00

.NOT. 0 0.00 0 0.00 11 2.13 0 0.00 0 0.00
Totals 3969 100.01 4549 100.01-- 51 100- 1 2954 100.00 108 100.-00

Table 3-5: Summary of Variable Operations Data

Variable Total
Type Operations PerCent
I * 2 3969 32.81
I * 4 4549 37.61

L 516 4.27
R * 4 2954 24.42
R * 8 108 0.89
Total 12096 100.00

65

Table 3-6: Summary of Other Operations Data

Operation Quantity
GO TO 1260
GO TO ASSIGN 4
Computed GO TO 1
DO n 302
DO FOR 150
DO FOREVER 1
DO UNTIL 20
DO WHILE 12
LEAVE 2
Procedure Call 716
Subroutine CALL 703
READ 4
WRITE 484
FORMAT 372
SELECT CASE 5
CASE 18
ASSIGN 47
REWIND 8
RETURN 242
STOP 3

Total 4354

occurrences of each operation that uses two-byte integer

variables. The third column gives the percent of

occurrences of that operation on two-byte integer

variables. This percent figure is calculated based on the

total number of two-byte integer operations.

The remaining columns in the table are paired just

like column two and column three. Each remaining pair of

columns contains the data for four byte integer, logical,

four byte real and eight byte real variables respectively.

66

Table 3-5 contains a summary of the totdl operations

by variable type. It also contains the percent of

operations by variable type relative to the total number of

operations.

Table 3-6 gives the total number of non-data

operations that are contained in the scene generator

software. These operations are necessary to the functioning

of the software but they do not manipulate any data other

than counters or internal variables.

67

IV. Dynamic Architecture Computer Design

A suitable dynamic architecture computer design could

be developed based strictly on the storage requirements of

the various types of data used throughout the software. In

this case, the scene generator software is being used as an

example. An analysis of the storage percent column in Table

3-2 suggests assigning a priority to each variable type

based on the percentage of its memory requirements. In

approximate terms, this means that the two-byte integer

variables require about the same amount of memory as the

four-byte integer variables. It also means that the

four-byte real variables require only about half of the

memory space as both of the integer cases. The memory

requirements of the other types of variables are all much

smaller in comparison. This approach might yield a set of

dynamic computer configurations with the following

processors:

1.) eight byte wide real

2.) two 4-byte wide integer

3.) two 2-byte wide integer + one 4-byte wide real

68

A fourth possibility would include logical operations with:

4.) one 4-byte wide integer + one 2-byte wide integer

+ one 2-byte wide logical

All of the logical variables declared within the

modules are four bytes wide. However, in every instance

that they are used, one byte would suffice. Therefore, all

of the logical operations could be handled by the two-byte

wide integer configuration.

A very small number of character variables exist

within the entire system of programs. However, their

existence is misleading because there are no character

manipulations in the software at all. The character

variables in this application are only declared and placed

in common for diagnostic and future expansion purposes.

Therefore, it is not necessary to consider them in this

design.

Even if there had been some instructions that used

character variables, the total number of character variables

would still be too small to warrant a configuration with a

separate processor for character manipulations. Only if

69

there were a large number of character instructions would a

separate processor be practical.

An eight-byte wide processor for real variables is

desired in the computer design because of the ease of

implementing eight-byte wide floating point instructions in

an eight-byte processor. That is. without this wide

processor, there would be a significant increase in the

number and complexity of individual operations necessary to

process the eight-byte wide data. The total number of

operations would increase because the complete width of the

data would not fit in the processor all at once. The

complexity of the operations would increase because it would

be necessary to keep track of all of the carry-ins and

carry-outs between the operations. However, because of the

relatively low number of eight-byte real variables, it would

be expected that the computer would spend very little time

in this configuration.

The two four-byte wide integer processors in the

second configuration are desirable because of the high

percentage of four-byte integer variables.

70

The third configuration is also desirable because it

can process twice as many two-byte integer variables as it

can four-byte real variables. Since there are twice as many

two-byte integer variables as there are four-byte real

variables, the third configuration provides a balance

between these two variable types. The second and third

configurations are also balanced between themselves.

The above design is based on the total storage

requirements of all of the types and sizes of variables. It

does not account for the fact that the relative proportion

of the types of variables is different when based on the

number of distinct variable names. When the data is

analyzed from the point of view of different variables

instead of just storage requirements, it is observed that

there is a bigger difference in the number of two-byte

integer and four-byte integer variables. In fact the number

of four-byte integer variables is three times the number of

two-byte integer variables. The number of four-byte real

variables is still roughly half the number of four-byte

integer variables but it is now about twice as many as the

two-byte integer variables. This suggests that there might

be some benefit in expanding the total width of the dynamic

computer architecture to accommodate more four-byte integer

processors.

71

This could be easily accomplished by simply adding one

four-byte integer processor to each of the proposed

configurations. The result would be as fellows:

1.) one 8-byte real + one 4-byte integer

2.) three 4-byte integer

3.) two 2-byte integer + one 4-byte real + one 4-byte

integer

4.) two 4-byte integer + one 2-byte integer + one

2-byte logical

This design would place at least one four-byte integer

processor in every configuration. Since more than half of

the variables in the software are four-byte integers, this

architecture would permit at least one four-byte integer

process to be executing whenever any other process was

executing. This would be desirable if the data regarding

the number of variables is representative of the type of

processing that is required.

So far the design has been based on the types and

quantities of data encountered. The number and type of data

manipulations (instructions) is not in the same ratio.

72

Table 4-1 shows a comparison of the percent of

occurrences of each type of variable, the percent of memory

required for each type of variable, and the percent of

occurrence of instructions for each type of variable. This

data is repeated from previous tables in Chapter 3. In

addition, a relative ranking is given for each percent.

This number is merely the rank order of each percent within

that column.

Table 4-1: Relative Occurrences by Variable Type

Variable type Variables Storage Instructions
I * 2 16.21 3 39.83 1 32.81 2
I * 4 51.36 1 38.27 2 37.61 1

L 2.39 4 .15 4 4.27 4
R * 4 28.63 2 21.68 3 24.42 3
R * 8 1.18 5 .07 5 .89 5

Table 4-1 itemizes the analysis techniques employed in

this study and summarizes the data gathered by each

technique. It is important to note that the three variable

types occurring most often are the same regardless of the

method of analysis. That is, the logical variables and the

eight-byte real variables always occur at a much smaller

rate than the other three variable types. Therefore, the

data collected supports design number two above.

73

The second design has a total of 15 processors divided

up as follows:

seven 4-byte integer processors

three 2-byte integer processors

one 2-byte logical processor

one 4-byte real processor

one 8-byte real processor

The scene generator software is currently executing in

a Systems Engineering Laboratory (SEL) 32/70 computer. In

order to achieve a gain in execution speed over the SEL

computer, the dynamic computer being designed should have at

least equivalent capabilities in areas such as the

instruction set. The functional classification and number

of instructions of the SEL 32/70 computer system is given in

Table 4-2. The variable types and the instructions used to

implement various software functions are discussed in the

following paragraphs.

Integer variables are called fixed point variables in

the SEL computer vendor's literature. The SEL computer

systems handle four sizes of integer variables. They are

byte (1 byte), halfword (2 bytes), word (4 bytes), and

doublewords (8 bytes).

74

Table 4-2: SEL 32/70 Instruction Repertoire

Classifications Number
Fixed Point Arithmetic 30
Floating Point Arithmetic 8
Boolean 17
Load/Store 29
Bit Manipulation 8
Zero 5
Shift 13
Interrupt 13
Compare 11
Branch 9
Register Transfer 13
Input/Output 10
Control 16
Hardware Memory Management 4
Writable Control Store 3

Total 189

There are 30 fixed-point arithmetic instructions of

.nich five deal with word operands and five deal with

halfword operands. The rest of the fixed point instructions

deal with byte operands, doubleword operands, register

operands, immediate operands, and the miscellaneous

functions called extend sign and round register.

Real variables are referred to as floating point

variables by the SEL computer manufacturer. Floating point

variables come in two types in this machine. The floating

point word variables are four bytes long and the floating

point doubleword variables are eigLt bytes long. The format

of the floating point variables is illustrate in Figure

4-1.

75

I I l I

S XX"ENT 14 BIT FRACTION
f f | # t I J J I I i J I p p

o I 2 3 4 6 B9 10 11 1 13141316 1 1 9 20 2123242 20 3031

EX dENT 6 BIT FRACTION

13 1 1 1 I , I _j - I I i I ' ' 7 J J

0 1 2 3 4 08 6 7 3 010)1 1131 49'9081J 531454 85 9o4 1I'2U34

Figure 4-1: Format of Floating Point Variables

There are eight floating point instructions in the SEL

32/70. Four of these are for the four-byte real operands

and four are for the eight-byte real operands.

The computer's logical instructions perform the AND

function, the OR function, and the exclusive-OR function on

bytes, halfwords, words and doublewords. Additional logical

instructions are available for performing these functions on

registers and masks.

IF statements in the software are implemented in the

hariware by performing the necessary arithmetic or logical

operations on a temporary work variable and then testing the

result for the specified conditions. Instructions are

available in the SEL 32/70 computer for doing arithmetic

comparisons on all four sizes of variables. Some of the

branch instructions have the capability of testing the

results of a compare and conditionally branching.

76

Dynamic Computer Features

Four different configurations were selected at the

beginning of this chapter as being the optimum

configurations for the dynamic computer architecture A

graphic example of the four configurations is given in

Figure 4-2.

8 Byte Real 4 Byte Integer

4 Byte Integer 4 Byte Integer 4 Byte Integer

2 Byte 2 Byte
4 Byte Real Integer Integer 4 Byte Integer

2 Byte 2 Byte
4 Byte Integer Logical Integer 4 Byte Integer

Figure 4-2: Possible Configurations

77

Format of floating point variables. The format of the

floating point variables in the dynamic architecture

computer are the same as those of the SEL 32/70 computer.

That is, there is one bit for sign, seven bits for the

exponent value, and either 24 or 56 bits for the mantissa.

Figure 4-1 illustrates the format. This method assures that

the variables in the dynamic architecture computer will have

sufficient accuracy and storage capacity to achieve adequate

performance.

Memory structure. The most important feature of the

dynamic architecture computer is the memory structure.

There are several methods of implementing an efficient

memory access but any approach that is selected must

efficiently overcome the problems of changing the word

length between configurations.

The changing width of the memory causes a problem in

two ways. The first is in the area of memory access. The

desired objective of each memory fetch should be to retrieve

exactly one variable or J- ;tion regardless of the width

of the data being retrieved. If the data were longer than

the width of the fetch, then multiple fetches would be

needed. If the data were shorter than the width of the

78

fetch, then only one fetch would be needed but the memory

space that was not needed would be wasted space. A memory

access mechanism that is able to get the proper number of

bits each time it operates is the major benefit to having a

variable architecture computer.

The other problem arises when accessing memory to

retrieve instructions. If a common instruction format and

length are selected so that the instructions for each

configuration are the same, then a conflict arises when the

working width of the memory changes. If the desired length

of the instructions is given to be the length of the

shortest variables in memory (16 bits in this case), this

length will be found to be insufficient to contain a large

enough memory address. If the instruction length is any

longer than the shortest variables, then one instruction

fetch would require multiple memory accesses.

Obviously there is a conflict between these two

requirements. There is the desire to vary the width of

memory accesses to make the retrieval of variables

efficient. There is also the desire to keep the memory

fixed to make the instruction retrieval efficient. Several

possible memory structures that provide a partial solution

are discussed below.

79

One possible method would have each memory location

the same size as the smallest variable used. This would

require multiple memory accesses for most of the variables

processed and would not achieve the desired performance.

Another approach would have a separate memory for each

size of variable. That is, the 16 bit variables would be

stored in a physically different memory than the 32 bit

words and the 64 bit words. Whenever the computer

architecture is switched from one configuration to another,

the memory being accessed would also be switched. This

method would make it difficult to have more than one size of

variable in the same statement. There would also have to be

a mechanism for moving data around between the various

memories.

The next method would have a separate memory for data

and instructions. Since all instructions would be contained

in the same memory, they could all be the same length.

However, this approach makes it more difficult to implement

any parallel execution paths.

A variation of this method would contain a separate

memory for each processing unit in the system. That is, the

80

64 bit floating point processor would have its own memory

and each 32 bit integer processor would have its own

memory. This approach would provide for parallel execution

paths but there would still be a need for a mechanism for

moving data around between the memories.

Another approach would allow different length

instructions for each type of processor. This technique

would not permit programs and data to be moved around from

computer to computer after they were loaded, thus making the

system less dynamic. The idea of making the instructions

common to all configurations within the computer is called

the principle of program universality. The concept of

program universality was introduced in the article

"Designing LSI Modular Computers and Systems" [Ref 6:9] and

was further discussed in the article "Adaptation Properties

for Dynamic Architectures" [Ref 15:5501.

It is obvious from the above discussion that there is

no single solution which will completely satisfy all of the

requirements for a dynamic memory structure without having a

detrimental effect on some other part of the system.

Therefore, the design of the dynamic computer architecture

must be based upon a trade-off of the total system

81

requirements. The basic requirements for the dynamic system

may be summarized as follows:

1.) The memory allocated to each variable should be no

bigger than what is required to exactly store that variable.

2.) The capability should exist for converting

variables from any type to any other type and from any size

to any other size.

3.) All instructions should have a common format and

length. There are 18 different arithmetic type operations

(Reference Table 3-4) and 20 other operations (Reference

Table 3-5) identified in the scene generator software. This

means that the operation code of the instructions should

have at least six bits. Six bits allows a total of 64

distinct operations. It would actually be desirable to

allow even more bits in the operation code field for future

inclusion of other instructions. For instance, calls to

procedures such as Sine and Cosine would improve efficiency

if they were implemented as additional instructions.

4.) The memory address portion of each instruction

should be sufficient to directly address all variables in

82

memory. Table 4-3 shows the total number of each size of

variable used in the scene generator software along with the

number of bits required to directly address that number of

variables.

Table 4-3: Summary of Variable Addressing Requirements

Size Integer Logical Real Total Bits for
(Bytes) Variables Variables Variables Variables Addressing

2 275,308 275,308 19
4 264,500 1,068 149,828 415,396 19
8 512 512 9

691,216 20

Twenty bits allows a direct memory address of 1,048,576

variables.

5.) The complete memory space must be large enough to

physically contain all of the variables and instructions

required for the scene generator software. A- shown above,

691,216 different memory locations are required for storage

of all of the variables. In addition, there are 12,096

variable operations (Reference Table 3-5) and 4354 other

operations (Reference Table 3-6). This represents a total

of 16,450 separate instructions which must also be placed in

memory.

83

Instruction format. Instructions for the dynamic

computer are the same format and size regardless of the

configuration. The instruction length was chosen to be 32

bits long. This length allows 9 bits for an operation code,

20 bits for an address, and 3 bits for a memory bank

identifier. This instruction format is illustrated in

Figure 4-3. The memory bank identifier field allows the

computer currently executing that instruction to perform the

required data transfer with any of the six data banks.

Memory
Op - Code Bank Address

Figure 4-3: Instruction Format

All of the arithmetic and control instructions

outlined in the tables in the previous discussion are

included. In addition, instructions are provided for

changing the architecture from its current state into any of

the other configurations.

Look ahead carry. Another feature in the dynamic

architecture computer is the implementation of a full

84

look-ahead carry for all of the types of variables that the

system can handle. Without this capability, the computer

would have to rely on a ripple carry to perform its

arithmetic functions.

Figure 4-4 illustrates how the carry in and carry out

function is implemented in the dynamic architecture

computer. Multiplexers are provided in order to move the

carry out bit to either the carry in portion of the next

computing section or to the appropriate condition code

register.

oA Z A= Processor A
B= P ocessor B

Co: Carry out
Ci Carry in

Z W Z Multiplexor to

Status and Status and control source

Condition code Condition code and destination
Register Register of carry bit

Look - ahead

Carry logic

Figure 4-4 Carry- In /Carry-Out Structure

85

Final design. The final design of the dynamic

architecture computer incorporates all of the features

described above. Figure 4-5 illustrates a portion of the

final design. This figure shows the interconnection of one

processing section and the memory banks. The same direct

connection exists between all of the processor sections and

all of the memory banks. The operation of the dynamic

architecture computer is described in the next section.

Dynamic Computer Operation

Memory in the dynamic computer is structured into six

banks of 16-bit words. The bottom portion of each memory is

accessed as individual 16-bit words. The middle portion of

each memory is accessed as 32-bit words. That is, each

32-bit memory access retrieves one portion of a 32-bit word

from one bin' 3nd the other portion of the 32-bit word from

the adjacent bank. The top portion of the memory in banks

one through four is treated as 64-bit words.

Each memory bank has a Memory Address Register (MAR)

and a Memory Data Register (MDR) associated with it. As far

86

0 0

E 0

0L ,o 0 0

%. & L 0 0 ..
T . 0 0 0 .

0-4 00 %- 00 Q
%. %- 0 0C..44-

0 4- 4-. .a. 4-

00~ 0 0a

CD to W o~ 0 0

c* 00 0 0
6~a <. a- o 4

0 o.~ 06 0

bE E E a

a. 0
11 11 1111 iti i t litii 111 It

a. a: a2x(- o(
<)(

in 4a-.)
ct:3

a: m

2

E

LLL

87

as the individual memory banks are concerned, these

registers function in exactly the same manner as the MAR and

MDR of an ordinary computer memory unit. That is, each

memory bank accesses 16 bits at a time, regardless of the

size and configuration of the processor requesting the

access. Words that are longer than 16 bits are accessed

from the same memory address in adjacent memory banks but

not-necessarily at the same time. Memory accesses that

retrieve different portions of a data word from adjacent

memory banks need not occur simultaneously in all of the

affected banks. Rather, with this architecture, each memory

bank can operate independent of the other banks.

The method for loading and unloading the MAR and MDR

as registers differs from an ordinary computer. Instead of

having one MAR and one MDR for each processor and memory

pair, each memory bank and each processor has a separate set

of registers. The MAR of each memory unit is loaded from

the MAR of one of the processors or from the Program Counter

(PC) of one of the processors. Likewise, the MDR of each

memory unit is loaded and unloaded through the MDR of one of

the processors or through the Instruction Register (IR) of

one of the processors.

88

Each processing unit is composed of all of the

necessary bit slice chips to construct a 16 bit wide

processor. Two of these units are combined together to form

the 32 bit wide processor when that configuration is called

for. Likewise, the hardware from four units are combined to

create the 64 bit processor. The connections that determine

whether or not a particular unit is a processor by itself or

is a part of a larger processor are controlled by individual

control units.

Each processor is connected to every memory through a

separate data path. This gives each processor the

capability to access each memory directly. This direct

access capability could have been provided with a data bus

which would also facilitate moving data from one memory to

another. However, the bus approach would slow down the

operational speed of the dynamic computer by forcing all

memory transactions to wait for a turn on the bus. The

assumption being made with the direct connection approach is

that the majority of the variables accessed by a given

processor will be contained in a single memory unit. Since

there are the same number of memory units as there are

processors, each memory may be thought to be most directly

associated with a given single processor. If a processor

89

needs to access a variable in a more distant memory, it can

still do so without the time penalty associated with a

bussed approach.

Memory access conflicts are handled by having a

separate MAR and MDR for each processor as well as each

memory. When a particular processor needs to access a

particular memory, the multiplexer associated with that

processor's MAR first checks to see if the MAR for that

memory is empty. An empty MAR signifies that no other

processor is using that memory at this time. If the MAR is

empty, the processor transfers the memory address contained

in its MAR into the MAR of that memory. The memory then

proceeds with the transaction by transferring the contents

of either the processor's MDR or the contents of the

memory's MDR depending on whether a read or a write was

requested. If the memory is currently busy with another

transaction, this will be signified by a non-empty MAR in

the memory. The processor must then wait until the previous

transaction is complete before proceeding.

The Program Counter (PC) and the Instruction Register

(IR) may also utilize the memory's registers in order to

retrieve instructions. The instruction fetch mechanism

90

follows the same procedure for accessing a memory that the

processors follow. Control circuits within the multiplexers

remember with which processor or instruction register the

memory is currently transacting.

Instruction fetches are implemented by utilizing a 32

bit instruction buffer (IB). Two adjacent processors share

a single instruction buffer. This instruction buffer is

filled from two adjacent memories whenever an instruction is

required by either processor.

Status and condition codes are normally stored in a

separate register for each 16-bit processor. However, when

two 16-bit processors are configured to act as a single

32-bit processor, the condition codes are passed between the

two 16-bit processors and stored in a single condition code

register.

The floating point processors are configured such that

the exponent portion (the first eight bits) of the floating

point variables always occurs in the same eight bits of

hardware. When a floating point operation is being

performed, these eight bits can be electronically separated

from the remaining 24 or 56 bits in order to make the

handling of the exponent function easier.

91

Summary

The dynamic architecture computer can change its

configuration to match the processing requirements of the

program currently being executed. The design is optimized

to execute a specific software package with a minimum of

memory access time.

There is sufficient detail in the design to make some

timing estimates and to compare these estimates with the

execution requirements of a single, serial processor. This

analysis is described in the next chapter.

92

V. Analysis and Conclusions

Analysis

The thrust of this thesis is to present the design of

a dynamic architecture computer that will realize a speed

improvement over a conventional architecture computer. The

design employed has at least two processors available for

parallel execution at any time. If the software also has

two parallel paths to execute, then it is natural to assume

that this computer will now execute the same software in

half the time that it would take to execute in a

conventional architecture computer. However, there are

several factors that must be considered in calculating the

dynamic computer execution time.

The first factor is to make an allowance for the

switching time for changing the configurations. This point

can be resolved by assuming that the time required to switch

configurations is at least no greater than the time required

to execute any of the other arithmetic or control

operations. In the variable architecture computer, the

configuration change would take place during one time frame

93

and then twc operations would execute in parallel during the

next time frame. In a regular architecture computer, one

operation would have been executed during the configuration

switch and the other operation would have been executed

during next time frame anyway.

The second factor is that it is not necessarily true

that there will always be two compatible operations ready to

execute. It is possible that the processes that are ready

cannot execute in the same configuration given the

combination of processors that have been established. In

other words, there may not be a four-byte integer operation

ready to execute whenever there is an eight-byte real

operation executing.

In order to address this problem, it is necessary to

know what instructions would occur simultaneously within the

code. To do this, it would be necessary to exactly model

the program flow for all of the programs in the system in

question. Since some of the scene generator programs used

as the example are very unstructured, it would be difficult

to achieve an accurate program flow graph without extensive

rewriting of the code.

94

Given that an accurate program flow graph is not

practical, it is still possible to approximate the speed

with which the code might be executed in the variable

architecture computer. In order to do this, several more

assumptions are required.

First, assume that each identified operation is

executed in a single machine instruction. This is a

reasonable assumption since the instruction set of the

dynamic computer has been designed to provide this

capability.

Second, assume that each machine instruction takes

exactly the same amount of time. This is a reasonable

assumption for all operations except possibly the floating

point operations.

Third, it is necessary to assume that the statistical

data collected by the analysis discussed above fairly

represents the overall operation of the system of programs.

Therefore, individual module deviations will average out

over the entire system. This also means that the relative

percentages of operations of various types will remain the

same even though many individual instructions will be

executed multiple times.

95

This final assumption acknowledges the fact that

individual modules may have a high number of operations that

are of the identical type and size. When this happens, a

certain number of those instructions cannot be executed in

parallel since not enough processors would exist in any of

the configurations. However, modules such as this would

still be executable in parallel with another module that has

a high number of different type of operation.

Given these assumptions, it is now possible to make

the following statements:

1. When a configuration is selected to perform

operations on a certain type of variable, the other

processors in that configuration will have operations

available to perform. For example, when configuration

number one is selected in order to execute eight-byte real

operations, there will also be enough four-byte integer

operations ready to execute so that no processing resources

are idle.

2. The order of operations is not significant. This

means that enough operations are available for each

96

configuration, such that the dynamic computer can remain in

that configuration for a relatively long time when compared

to the configuration switching time. This makes the

configuration switching time insignificant.

The best case analysis can now procced as follows:

1. Select a particular type of variable to operate on

2. Select the configuration that will execute that

type of operation

5. Cycle the dynamic computer enough times in that

configuration to execute all required operations on that

particular type of variable

4. Select a different type of variable and repeat

steps 1 through 4.

Table 5-1 summarizes the total number of operations

required for each variable type. Table 5-2 summarizes the

configurations and the types of operations available in each

configuration. Table 5-3 details the results of this

analysis performed by selecting first configuration number

one, then configuration number two, followed by

configuration number three and finally configuration number

four.

97

able 5-1: Summary of Processors and Operations

Variable Total Total
Type Operations Processors

I * 2 3969 3
I * 4 4549 7
L 516 1

R * 4 2954 1
R * 8 108 1
TOTAL 12,096 13

Table 5-2: Summary of Configurations and Operations

Processors
Configuration Number Type

1 1 eight-byte real
I four-byte integer

2 3 four-byte integer

3 2 two-byte integer
1 four-byte integer
I four-byte real

4 2 four-byte integer
1 two-byte integer
1 two-byte logical

Table 5-3: Detailed Execution Analysis

Total
Instruction 1*2 1*4 L R*4 R*8

Configuration Cycles 3969 4549 516 2954 108
1 108 0 108 0 0 108

Balance 3969 4441 516 2954 0
4 516 516 1032 516 0 0

Balance 345-5-3 5409 0 2954 0
3 2954 5908 2954 0 2954 0

Balance 0 455 5 0 0
2 152 0 456 0 0 0

Balance 0 0 0 0 0
Total 3730

98

Selecting configuration number one and then cycling

the dynamic computer for 108 operations will execute all of

the eight-byte real operations. As can be seen from Table

5-3, this will also execute 108 of the four-byte integer

operations. This leaves a balance of 4,441 four-byte

integer operations and the rest as they were. The balance

for all operations is shown on the next line in the table.

The next configuration selected is number four. This

configuration is cycled 516 times in order to execute all of

the required logical operations. Also at this time, 516

two-byte integer operations and 1032 four-byte integer

operations are executed. The balance of the operations are

shown on the next line in the table.

Selecting configuration number three next will execute

all of the four-byte real operations. Notice that there is

a surplus of two-byte integer operations when this

configuration is executed 2,954 times.

Finally, configuration number two will execute the

remaining 455 four-byte integer operations. Only 152

machine instruction cycles are required since this

configuration has three separate processors for this type of

operation.

99

The total number of dynamic computer instruction

cycles required is 3730. The total number of instructions

required from P conventional computer is 12,096. Figure 5-1

shows that, given ideal conditions, this dynamic

architecture computer can execute the same set of operations

in only 31 percent of the time that it would take a

conventional computer.

- 3730 X 100 % = 30.8%
12096I

Figure 5-1: Percentage of Execution Time Required
by Dynamic Computer

The worst case condition would be the situation where

each configuration would execute only one instruction before

being forced to change to another configuration. In this

case, the total execution time would be approximately twice

the time required to execute the same software in a

conventional computer.

The actual execution efficiency lies somewhere in

between. However, a more accurate estimate of execution

efficiency would have to based on a more accurate picture of

100

what the software actually does while executing. As

mentioned earlier, the true execution path can not be known

without reorganizing and rewriting some of the example

software. Suggestions for how this might be done are

discussed in the section on recommended further research.

Conclusions

The design and analysis presented in the previous

sections do not deal with any of the current technology of

software engineering and program structure. Although it is

possible to expand this architecture to fit more general

purpose applications, it would require that the compiler be

very intelligent. The compiler would have to be smart

enough to break any program down into clusters of equal size

variables and then place them into the proper memory bank.

A lot of research has been done in finding techniques to do

this. Some of these techniques are discussed in the

articles in the literature review section.

It may also be found that it is necessary to assign a

priority on memory transactions by the various processing

units. The data accumulated in analyzing this one

101

particular application suggests that memory accesses from

processors other than the one most directly associated with

a particular memory should have priority over memory access

by the directly associated processor. Instruction accesses

should have priority over both.

A single instruction buffer for two processors will

probably not be enough in a general purpose dynamic

computer. However, in this application a significant number

of the operations are on 32 bit data. Since this means that

two 16 bit processors will be combined together to create

one 32 bit processor, these two processors are not really

sharing the instruction buffer at all. The large number of

32 bit operations in this application is enough to justify

having a single instruction buffer.

More research is required on dynamic computer

architectures. However, in the specific application

addressed by this study it has been shown that a significant

increase in processing speed can be achieved by using a

dynamic computer.

102

Recommendations for Further Research

The design proposed in this thesis for a dynamic

arcnitecture computer was based strictly on the statistical

occurrence of various types of variables and instructions.

As such, it has several limitations which could be

eliminated through further research work. For instance,

each operation is counted only once even though it may be

executed several times in a loop or in multiple entries into

the same subroutine. This is how the instructions would be

counted if one copy of all of the programs and subroutines

were placed in memory at the same time. However, when the

program executes, execution will enter several of the

subroutines many times. Since the instructions contained in

those subroutines are then executed multiple times, those

instructions could be given added weight when it comes to

calculating the number of instructions per variable type.

One method of solving this problem using the data

collected would be to count the total number of instructions

that would be executed if all of the subroutine's CALLs were

made. This would require multiplying the numbers for each

subroutine by the number of times that subroutine was

called. For instance, when a subroutine is called twice

103

from another program, it is the equivalent of passing

through that subroutine's code twice.

Another method of analysis would be to substitute the

code from each subroutine directly into the place where that

subroutine CALL was made. This procedure would require

quite a few variable name replacements as each variable in

the CALL statement list could have a different name in the

body of the subroutine.

At the same time that the subroutine substitutions

were being made, other superfluous code could be

eliminated. Lines of code like comment lines, printer

output and data declarations would not be executed during

real-time so they could be eliminated for the analysis.

An analysis of the inner workings of the scene

generator software would make it possible to remove much of

the disk input and output. As stated in Chapter Two, the

communication between major programs is accomplished by

passing data in and out of disk files. It can be seen from

the module descriptions in Appendix B that a sizable amount

of code exists for the sole purpose of compacting and

expanding the data in the disk files. If all

104

of the main programs were resident in memory at the same

time during real-time execution, then most of the disk

activity could be eliminated.

The end result of this method would be a continuous

stream of FORTRAN code. If the code was structured, this

would also facilitate constructing a program flow graph.

A program flow graph is another valid method of

analyzing the code. It would have worked in this case if

the code had been written in a nice, structured manner.

However, in many cases, the code as written is very

convoluted and an adequate flow graph can not be constructed

without a serious restructuring of the code. The algorithm

detailed in Chapter Two provides a convenient methodology

for constructing a program flow graph.

Probably the most important and productive task which

could be done to continue this study would be to obtain the

actual variable sizes. As stated earlier in the discussion,

this task was not possible at this time because of all of

the additional software that needs to be running in order to

collect this data. This additional software is needed in

order to supply the scene generator software with the

105

required scene data in the correct format. However, if this

task were possible, it would provide the data to predict

more exacting variable sizes.

The next task would be to find the execution path of

the instructions. This task would also be simplified if the

scene generator software were actually executing. If the

scene generator programs were running, it would be possible

to follow the execution through conditionals and loops by

setting up intermediate output variables at all places in

the code were a branch takes place. This information, along

with a program flow graph, would provide a better look into

the parallelism of the processes.

The third task would be to look at the functioning of

the software itself. Since 525 lines must be produced in

order to display one scene, there is a possibility that each

line could be calculated in parallel. There is also a

possibility that each pixel calculation would represent a

separate identifiable calculation. Pixel calculations might

be optimized by dedicating a separate computer configuration

to this purpose.

106

Also, by analyzing the details of the software, it

would be possible to streamline the executable code. This

would involve removing all of the intermediate output such

as printer output, instructions that calculate the timing of

the major programs, and most of the disk input and output.

Most of the disk input and output exists because of the way

the software passes data between processes. This portion of

the disk operations could be removed if all of the processes

remained in memory at all times. Some of the disk

operations would remain in order for the scene data itself

to pass from data base to data base.

Finally, there is no need to restrict the design of

the dynamic architecture computer to a few simple

configurations. There are many more possible combinations

that could be constructed using the same amount of

hardware. These combinations should be further optimized

with the additional data collected in the foregoing

suggested steps.

It is also not necessary to limit the design of the

dynamic architecture computer to a small set of hardware

with a small set of configurations. Given a good program

flow graph and adequate data on the size of all variables

107

involved, an architecture could be designed that would be as

wide as necessary to execute all possible parallel paths.

It is probable that the number of configurations that would

be needed would still be limited.

108

References

1. Dimond, K. R., and A. J. King. "A Flexible Development
System for Microprogrammable Microprocessors,"
International Journal of Electrical Engineering
Education, April 1979, pp. 156-165.

2. Estrin, Gerald. "Organization of Computer Systems: The
Fixed Plus Variable Structure Computer," Proceedings of
the Western Joint Computer Conference, 1960, pp. 33-40.

j. Estrin, Gerald, B. Bussell, R. Turn, J. Bibb. "Parallel
Processing in a Restructable Computer System," IEEE
Transactions on Electronic Computers, Vol. EC-12, pp.
747-755, 1963.

4. Fuchs, Henry, and Brian W. Johnson. "An Expandable
Multiprocessor Architecture For Video Graphics," The
Sixth Annual Symposium On Computer Architecture. New
York: IEEE, 1979, pp.58-67.

5. Kartashev, Steven I., and Svetlana P. Kartashev. "A
Powerful LSI Metacomputer System With Dynamic
Architecture For Simulation Of Complex Problems,"
Modeling And Simulation Annual Pittsburgh Conference
Proceedings. Pittsburgh: ISA, 1977, pp. 483-488.

6. Kartashev, Steven I., and Svetlana P. Kartashev.
"Designing LSI Modular Computers And Systems,"
Proceedings Of The International Symposium On Mini And
Micro Computing. New York: IEEE, November 1978, PP.
1-9.

7. Kartashev, Steven I., and Svetlana P. Kartashev.
"Dynamic Architectures: Problems And Solutions,"
Computer, July 1978, pp. 26-40.

8. Kartashev, Steven I., and Svetlana P. Kartashev. "LSI
Moduler Computers, Systems, And Networks," Computer,
July 1978, pp. 7-15.

9. Kartashev, Steven I., and Svetlana P. Kartashev.
"Software Problems For Dynamic Architectures: Adaptive
Assignment Of Hardware Resources," IEEE Computer
Society International Computer Software And Application
Conference. New York: IEEE, 1978, pp. 775-780.

109

10. Kartashev, Steven I., and Svetlana P. Kartashev.
"Adaptable Pipeline System With Dynamic Architecture,"
Proceedings Of 1979 International Conference On Parallel
Processing. New York: IEEE, 1979, pp. 222-230.

11. Kartashev, Steven I., and Svetlana P. Kartashev. "A
Multicomputer System With Dynamic Architecture," IEEE
Transactions On Computers, October 1979, pp. 704-721.

12. Kartashev, Steven I., and Svetlana P. Kartashev.
"Distribution Of Programs For A System With Dynamic
Architecture," IEEE Transactions On Computers, June
1982, pp. 488-514.

13. Kartashev, Steven I., and Svetlana P. Kartashev.
"Adaptation Properties For Dynamic Architectures,"
AFIPS National Computer Conference Proceedings.
Montvale: AFIPS Press, 1979, pp. 543-556.

14. Rauscher, Tomlinson G., and Ashok K. Agrawala. "Dynamic
Problem-Oriented Redefinition Of Computer Architecture
Via Microprogramming," IEEE Transactions On Computing,
November 1978, pp. 1006-1014.

15. Vick, Charles R.,. Steven I. Kartashev, and Svetlana P.
Kartashev. "Adaptable Architectures For Supersystems,"
Computer, November 1980, pp. 30-35.

16. Computer Program Product Specification, Mathematical
Model for Scene Generation System CPCI Volume III, 20
Sept 1979, Contract F33657-78-C-0421.

110

Bibliography

1. Kartashev, Steven I., and Svetlana P. Kartashev.
"Evolution In Dynamic Architectures," Microprocessors
And Microsystems, July-August 1979, pp. 249-250.

2. Wileden, Jack C. "An Introduction To the Modeling of
Parallel Systems With Dynamic Structure," Proceedings of
1979 International Conference On Parallel Processing,
New York: IEEE, 1979, pp. 65-73.

3. White, Donnamaie E. Bit-Slice Design: Controllers and
ALUs, New York: Garland STPM Press, 1981.

4. Myers, Glenford J. Digital System Design With LSI
Bit-Slice Logic, New York: John Wiley and Sons, Inc.,
1980.

5. Mick, John, and James Brick. Bit-Slice Microprocessor
Design, New York: McGraw-Hill, 1980.

6. ---. The Am2900 Family Data Book, Sunnyvale CA: Advanced
Micro Devices, 1979.

111

Appendix A

Module Calling Summary

112

Module Calls Called By Main Program
1 AREAl LRL,INGS,TB2 FRAMES

2 AREA2 CLR LPR2,SINGSTB2 FRAME3
COLOR

3 AREAS 1B2 FRAME3
COLOR

4 AREA4 LR2 FRAME3
COLOR

5 ARECAL PTLGEN FRAME3
6 AREMOD PTLIEN FRAME3
7 CNNOUT SCGEN SCGEN

PUT
PUTCLR
PUT SET

8 COL FACPRO,PTCAL FRAME2
CPBLND
CPFADE
CPLITE

9 COLOR AREA1,AREA2,AREA3,AREA4, FRAMES
LR2, STNGS,TB2

10 CPBLND COL FRAME2
11 CPFADE COL FRAME2
12 CPLITE COL FRAME2
1S CSDEF PARSEL FRAMES
14 CXMAP FRAME3 FRAMES

CLOSE
PUT
PUT CLR
PUT SET
REED
SETFIL
SETRO

15 DECODE PRIRSV FRAMES
16 DLCAL FACPRO FRAME2

REED2
SETRD2
VT P

17 DRCTRY SCGEN SCGEN
EXIT
I PUT
REED
SETRD

113

Module Calls Called By Main Program
18 EDGCAL FACPRO FRAME2

EXIT
FEP
NE WED
REED2
SETRD2
VTP

19 EDGGEN FRAMES FRAME3
CLOSE
PUT
PUTSET
SETFIL

20 EDGORD FRAME3 FRAME3
B CL R
BSET
MODIFY
MODRD
MOD SET
ORDER
PUT CLR
REED
SETRD

21 EDWOUT FRAME2,NEWED,NEWPL FRAME2
PUT2

22 ERRRPT MDCLR2,MODCLR,MODFY2,MODIFY, FRAME1
MODRD,MODSET,MODST2,PTCLR2, FRAME2
PUT, PUT2, PUT CLR, REED, FRAME3
REED2, SETRD, SETRD2 PRIPRO

S CGEN
FACCOM

23 FACCOM FACCOM
EXIT
MODIFY
MODRD
MODSET
SETFIL
TIME

24 FACOUT FACPRO FRAME2
PUT2

25 FACPRO FRAME2 FRAME2
BSET
COL
DL CAL
EDO CAL
EXIT
FACOUT
FMOD
MAPNDX
PT CAL
REED2
SETRD2
VTP

114

Module Calls Called By Main Program

26 FADCNP FRAME1 FRAME1

27 FEP EDGCAL,PTCAL FRAME2

28 FMOD FACPRO FRAME2

29 FRAME 1
FRAME 1

CLOSE
FAD CMP
LNGLAT
LOD
MMFAD
MOD CLR
MODIFY
MOD SET
MOVE
MULT
PUT
PUT CLR
P UT SET
REED
ROTMAT
SETFIL
SET RD
TIME
TMULT
TRANS
TTMUL
TVEC
VEC
VT P
WI NDOW

30O FRAME2
FRAME2

CLOSE
ED WOUT
FACPRO
HDROUT
INIT2
LSTOUT
MULT
PTCLR2
PUT2
REED2
SETRD2
TIME
TVEC
UPDATE
VT P

115

Module Calls Called By Main Program
31 FRAME3 FRAME3

CXMAP
EDGGEN
EDG ORD
EXIT
INIT3
ORDER
PATPRO
PRIRSV
PTLGEN
PTLSET
R ST PED
RSTPLT
STPED
STPLT
TIME
VIDOUT
VIDPRO
WNDDMP

32 HDROUT FRAME2 FRAME2
PUT2

33 INIT2 FRAME2 FRAME2
CLOSE
PUT ST 2
REED2
SETFIL
SETRD2

34 INIT3 FRAME3 FRAME3
CLOSE
RAM SET
REED
SETFIL
SETRD

35 INPUT SCGEN SOG EN
REED
SETRD

36 LNGLAT FRAME1 FRAME1
37 LOD FRAME1 FRAME1

EXIT
38 LR2 PARSEL FRAME3

AREA 1
AREA2
AREA4
COLOR
MODSELECT - Internal

39 LSTOUT FRAME2 FRAME2
PUT2

40 MAPNDX FACPRO FRAME2
41 MDCLR2 UPDATE FRAME2

ERRRPT
EXIT
SYSIO

116

Module Calls Called By Main Program
42 MMFAD FRAMEl FRAME1
413 MODCLR FRAME1 FRAME 1

ERRRPT
EXIT
SY SIC

44 MODCNT PPFPL PRIPRO
PPCNT
PP SORT

45 MODFY2 UPDATE FRAME2
ERRRPT
EXIT
SYSIO

46 MODIFY EDGORD,FRAME1,PATPRO FRAME1
ERRRPT FRAME3
EXIT FACCOM
SY 510

47 MODRD EDGORD,PATPRO FRAME3
ERRRPT FACCOM
EXIT
SYSIO

48 MODSET EDGORD,FRAMEI,PATPRO FRAME1
ERRRPT FRAME3
EXIT FACCOM
SY SIC

49 MODST2 UPDATE FRAME2
ERRRPT
EXIT
SYSIO

50 MODULA PRIRSV FRAME3
51 MOVE FRAME1 FRAME1
52 MULT FRAME1,FRAME2 FRAME1

FRAME2
513 NEWBLK PPFPL PRIPRO

PPCNT
RDBLK

54 NEWED EDGCAL FRAME2
B SET
EDWOUT

55 NEWPL PTCAL FRAME2
EDW OUT

56 NSEDGR PRIRSV FRAME3
57 NSOUT NSRSLV FRAME3

PUT
PUT SET
SETFIL

58 NSRSLV PRIRSV FRAME3
NSOUT
PRINTEDGETABLE - Internal

59 ORDER EDGORD,FRAME3 FRAME3
60 OVERID PARSEL FRAME3

117

Module Calls Called By Main Program
61 PARSEL PRIRSV FRAME3

CSDEF
LR2
OVERID
SING S
TB2

62 PATPRO FRAME3 FRAME3
CLOSE
MODIFY
MODRD
MOD SET
PRDMP
PUT CLR

63 PPCNT MODCNT,NEWBLK PRIPRO
64 PPFPL PRIPRO PRIPRO

MODCNT
N EWBLK

65 PPINP PRIPRO PRIPRO
CLOSE
REED
SETFIL
SETRD

66 PPLIST PRIPRO PRIPRO
67 PPMSG PRIPRO PRIPRO
68 PPSORT MODCNT,PPUOL PRIPRO
69 PPIJOL PRIPRO PRIPRO

PP SORT
70 PRAPLU PRIRSV FRAME3
71 PRAREA PRIRSV FRAMES
72 PRAUPD PRELOD FR AME S
73 PRCLR PRIRSV FRAME3
74 PRDMP PATPRO FRAME3
75 PREDGR PRIRSV FRAME3
76 PREEFS PRELOD FRAME3
77 PRELOD PRIRSV FRAME3

PRAUPD
PREEFS
PRNEFS
PRNXTO
PRSTOR

78 PREPD PRIRSV FRAME3
79 PRESEL PRIRSV FRAME3
80 PRFBKU PRIRSV FRAME3
81 PRINIT PRIRSV FRAME3
82 PRIPRO PRIPRO

CLOSE
EXIT
PPFPL
PPINP
PPLIST
PPMSG
PPUOL
TIME
WRTFPL

118

Module Calls Called By Main Program
83 PRIRSV COE FRAME3 FRAME3

DECODE
MODULA
NSEDGR
NSRSLV
PARSEL
PRAPLJ
PRAREA
PRCLR
P REDG R
PRELOD
PREPD
PRESEL
PRFBKU
PRINIT
PRCEJT
PRTPLU
PRVIS
SELDMP

84 PRNEFS PRELOD FRAME3
85 PRNXTC PRELCD FRAME3
86 PROUT PRIRSV FRAME3

PUT
PUT SET
SETFIL

87 PRSTCR PRELOD FRAME5
88 PRTPLU PRIRSV FRAME3

CLEARTRANSITIONLIST -Internal

89 PRVIS PRIRSV FRAME5
90 PTCAL FACPRC FRAME2

COL
FEP
NEWPL
REED2
SETRD2
VT P

91 PTCLR2 FRAME2 FRAME2
ERRRPT
EXIT
SY SIC

92 PTLGEN FRAME3 FRAME3
ARE CAL
AREMOD
CLOSE
PUT CLR
SAVELT

93 PTLSIT FRAME3 FRAME3
CLOSE
PUT
PUTSET
SETFIL

119

Module Calls Called By MainProgram
94 PUT CMNOUT, CXMAP, EDGGEN, FRAMEi FRAME1

ERRRPT NSOUT, PROUT, PTLSIT, SAVELT, FRAME3
EXIT WRTFPL PRIPRO
SYSIC SCGEN

95 PUT2 EDWOUT,FACOUT,FRAME2,HDROUT, FRAME2
ERRRPT LSTOUT
EXIT
SYSIO

96 PLJTCLR CMNOUT, CXMAP, EDGORD, FRAMEl, FRAME1
ERRRPT PATPRO, PTLGEN ,WRTFPL FRAME3
EXIT PRIPRO
SYSIO SCGEN

97 PUTSET CMNOUT,CXMAP,EDGGEN,FRAME1, FRAME1
NSOUT, PROUT, PTLSIT, SAVELT, FRAME3
WRTFPL PRIPRO

S CGEN
98 PUTST2 INIT2 FRAMvE2
99 RAMOUT VIDOUT FRAME3

EXIT
IOERR
SYSIO

100 RAMSET INIT3 FRAME3
EXIT
IOERR
SYSIO

101 RDBLK NEWBL(PRIPRO
REED
SETFIL
SETRD

102 REED CXMAP,DRCTRY,EDGORD,FRAME1, FRAME1
ERRRPT INIT3,INPUT,PPINP,RDBLK, FRAMES
EXIT RSTPED,RSTPLT, STPED, STPLT, PRIPRO
SYSIG TSTXMD, VPAINC, VPLTC,WNDDMP SCGEN

103 REED2 DLCAL, EDGCAL, FACPRO, FRAME2, FRAME2
ERRRPT INIT2, PTCAL
EXIT
SYSIO

104 ROTMAT FRAMEl FRAME1
105 RSTPED FRAME3 FRAME3

CLOSE
REED

106 RSTPLT FRAME3 FRAME3
CLOSE
REED

107 SAVELT PTLGEN FRAMES
PUT
P UT SET
SETFIL

120

Module Calls Called By Main Program
108 SCGEN SCG EN

CLOSE
CMNOUT
DRCTRY
INPUT
SETFIL
TIME

109 SELDMP PRIRSV FRAME3
110 SETFIL CXMAP, EDGGEN, FACCOM, FRAME1, FRAME1

EXIT INIT2,INIT3,NSOUT,PPINP, FRAME2
OPEiNW PROUT, PTLSIT, SAVELT, SCG EN, FRAME3

STPED, STPLT, UPDATE, VPAINC, PRIPRO
VPLTC,WNDDMP,WRTFPL SCGEN

FACCOM
111 SETRD CXMAP,DRCTRY,EDG0RD, FRAME1, FRAME1

ERRRPT INIT3, INPUT,PPINP,RDBLK, FRAME3
EXIT STPED, STPLT,TSTXMD,VPAINC, PRIPRO
SYSIO VPLTC,WNDDMP SCGEN

112 SETRD2 DLCAL,EDGCAL, FACPRO, FRAME2, FRAME2
ERRRPT INIT2,PTCAL
EXIT
SYSIC

113 SINGS PARSEL FRAME3
AREA 1
AREA2
COLOR
MODSELECT - Internal

114 STPED FRAME3 FRAME3
CLOSE
REED
SETFIL
SETRD

115 STPLT FRAME3 FRAMVE5
CLOSE
REED
SETFIL
SETRD

116 TB2 PARSEL FRAME3
AREA 1
AREA2
AREA3
COLOR
MODSELECT - Internal

117 TMULT FRAME1 FRAME1
118 TRANS FRAME1 FRAME 1
119 TSBNST TSBSNO FRAME3
120 TSBSNO TSESP FRAME3

TSBNST
121 TSDBN TSESP FRAME3

121

Module Calls Called By Mi roram
122 TSEA TSEDA FRAMES
123 TSEDA TSESP FRAMES

TSEA
124 TSEDGR TSESP,TSINIT FRAME3
125 TSEMOV TSESP FRAMED
126 TSESP VPTEX FRAMES

TSBSNO
TSDBN
TSEDA
TSEDGR
TSEMOV
TSLODS
TSMUX
TSP INC
TSSHAD
TSTXMD

127 TSINIT VPTEX FRAME3
T SEDG R

128 TSLOD TSLODS FRAMES
129 TSLODS TSESP FRAMES

TSLOD
130 TSMUX TSESP FRAMES
131 TSPINC TSESP FRAMES
132 TSSHAD TSESP FRAMES
133 TSTXMD TSESP FRAMES

REED
SETRD
SETUPLOD - Internal
SETUPMAP - Internal calls REED and SETRD

154 TTMUL FRAMEl FRAMEl
135 TVEC FRAME1,FRAME2 FRAME1

FRAME2
136 UPDATE FRAME2 FRAME2

CLOSE
MDCLR2
MODFY2
MOD 5T2
SETFIL

157 VEC FRAMEl FRAMEl
138 VIDOUT FRAMES FRAMES

RAMOUT
159 VIDPRO FRAME3 FRAMES

CLOSE
VPAINC
VPCFC
VPFADE
VPIFLD
VPILN
VPLNDL
VPLTC
VPMLF
VPSIMP
VPTEX

122

Module Calls Called By Main Program
140 VPAINC VIDPRO FRAMES

REED
SETFIL
SETRD

141 VPCFC VIDPRO FRAMES
142 VPFADE VIDPRO FRAMES
143 VPIFLD VIDPRO FRAMES
144 VPILN VIDPRO FRAME3
145 VPLNDL VIDPRO FRAME3
146 VPLTC VIDPRO FRAMES

CLOSE
REED
SETFIL

147 PMLF SETRD IPOFAE
147 VPSMF VIDPRO FRAMES
148 VPSIMP VIDPRO FRAMES

TSESP
T SI NIT

150 VTP DLCAL,EDGCAL,FACPRO,FRAME1, FRAME1
FRAME2, PTCAL FRAME2

151 WINDOW FRAME1 FRAME1
152 WNDDMP FRAMES FRAMES

REED
SETFIL
SETRD

153 WRTFPL PRIPRO PRIPRO
PUT
PUT CL R
PUT SET
SETFIL

System Modules

Name Called By

BCLR EDGORD

BSET EDGORD, FACPRO,NEWED

CLOSE CXMAP,EDGGEN,FRAME1 ,FRAME2,
INIT2, INIT3,PATPRO,PPINP,
PRIPRO, PRIRSV, PTLGEN, PTLSET,
RSTPED, RSTPLT, SCGEN, STPED,
STPLT,UPDATE, VIDPRO, VPLTC

123

Name Called By

EXIT DRCTRY, EDGCAL, FACCOM, FACPRO,
FRAME3, LOD, MDCLR2, MODCLR,
MODFY2,MODIFY, MODRD ,MOD SET,
MODST2, PRIPRO,PTCLR2, PUT,
PUT2, PUTCLR, RAMOUT, RAMSET,
REED, REED2, SETFIL, SETRD,
SETRD2

I OERR RAMOUT, RAMSET

IPUT DRCTRY

OPENW SETFIL

SYSIO MDCLR2,MODCLR,MODFY2,MODIFY,
MODRD, MOD SET, MOD ST2, PTCLR2,
PUT, PUT2, PUTCLR, RAMOUT,
RAMSET, REED, REED2, SETRD,
SETRD2

TIME FACCOM,FRAME1 ,FRAME2,FRAME3,
FRI PRO, SCGEN

124

Appendix B

Module Descriptions

125

Module Description
1 AREAl generates the scene object areas for area 1

specified by the edge parameter tables included
in the subfunctions SINGS, TB2, and LR2.

2 AREA2 generates the scene object areas for area 2
specified by the edge parameter tables included
in the subfunctions SINGS, TB2, and LR2.

3 AREA3 generates the scene object areas specified by
the edge parameters in the two-edge top/bottom
case.

4 AREA4 generates the scene object areas for area 4
specified in subfunction LR2.

5 ARECAL calculates areas subtended by a point source for
a given raster line.

6 AREMOD modifies the light source area by comparing two
point lights within that area.

7 CMNOUT creates a disk file that contains tie
intermodule COMMON data. This data file serves
as the intermodule data link between all the
modules of the Scene Generator. The PUT
submodule is the primary means of dumping the
COMMON's out to disk.

8 COL processes, per entry, one face or light. For
normal faces, it builds and modifies for sun
illumination; for light faces, it modifies color
by brightness; for point lights, it calculates
fading range; and it stores results in modified
color memory.

9 COLOR generates the color intensity arameters
specified by the case parameter tables.

10 CPBLND integraLe6 into a face either sky, ground, haze
or the next indicated face. Once done, this
module will then modify the brightness of the
face according to the sun illumination.

11 CPFADE calculates the fading coefficient depending upon
range and the fading determinate. It also
returns arguments for full fading and for no
fading.

12 CPLITE determines brightness, color, and size for point
lights using light parameter constants, the
light extinguishing curve and range.

15 CSDEF identifies the conditions which determine
two-edge case numbers and sets an indicator to
the code representing the extant conditions.

14 CXMAP constructs a table in which the number of edge
vertices on each raster line are recorded and
the number of point source boundaries that start
and stop on each raster line are recorded.

126

Module Description
15 DECODE examines the face characteristics and edge flags

of the four edges in the edge load store to
decode the case types.

16 DLCAL checks to see if designated light is in
universal features file; reads data from disk
using SETRD2 and REED2; checks for visibility of
light.

17 DRCTRY orders the Environment Data Blocks (EDB's) that
make up the Environment Data Base; pull all of
the data out of the EDB's that will be used by
the Frame I Module. A directory of pointers is
constructed; each pointer is the actual record
number of an EDB in the data base. The result
is an ordered list of pointers that organize the
EDB's by coarse region centroid, and by level of
detail within each coarse region. The number of
12' x 12' regions in the data base, along with
their centroids and their coordinate set
indicator is determined.

18 EDGCAL distinguishes between environmental and
universal data, inputs correct data, rotates
vertices as necessary, sets up appropriate
variables, processes face edges, builds edges of
lights, and stores data through NEWED submodule.

19 EDGGEN calculates the left and right intercepts where
each edge crosses the raster line.

20 EDGORD processes an ordered list of edge left
intercepts to obtain a list of relative face
numbers, and from that list, a list of relative
priority numbers for the faces in the scene.

21 EDWOUT counts the number of edges in the face and the
number of lights, supplies the proper headings,
and, using submodule PUT2, puts data into files
corresponding to disk sector size.

22 ERRRPT reports any error received as the result of an
input/output operation.

23 FACCOM compresses face list.
24 FACOUT determines face type, modifies terrain face

based upon priority range, calculates feature
numbers for universal objects, and calculates
relative face number and writes the record into
the active face list.

25 FACPRO clears active external face list, checks on the
number of faces to be processed, reads data from
buffer, computes values, checks for visibility
and universal features, computes variables
dependent upon sun illumination, checks texture
orientation, builds temporary active face list,
checks for proper organization of data and
builds new external face list.

127

Module Description
26 FADCMP calculates the Frame II and Frame III fading and

horizon coefficients to be used in sky, ground
and haze color processing.

27 FEP tests to determine if the mode is point light or
face. If face it then tests for minimum size
light face. If it is minimum size light or
point light, a test is made to determine if the
light is visible in channel is tested. If not
minimum size light face or point light, the
vertices are checked to determine if any
boundaries have been crossed, and if so, the
vertices are replaced and tested. Then it tests
for a possible pseudo edge and defines it if
necessary.

28 FMOD computes the pattern/shading coefficients for
Frame III by computing the view point vector,
rotating face vectors as needed, retrieving the
appropriate texture/shading data and determining
texture coefficients.

29 FRAMEl calculates the rotation matrices needed by other
modules, performs region channel assignment on
environment data provided by the Scene Generator
Controller Module, and calculates fading and
horizon coefficients for fading; performs the
executive function of controlling the other
submodules within the task FRAME1.

30 FRAME2 initializes, reads subregion data and processes
clusters, faces and universal features and
updates the intermodule COMMON data file for use
by future modules; performs the executive
function of controlling the other submodules
within the task FRAME2.

31 FRAME3 calls the subfunctions that constitute the color
intensity calculations in the required sequence;
performs the executive function of controlling
the other submodules within the task FRAME3.

32 HDROUT generates and then writes the header to the
active face list. The header will be comprised
of the BLOCK#, BLOCK TYPE, VP VECTOR, and the
BLOCK SCALING FACTOR.

53 INIT2 initializes files, builds logical unit table to
match with other input/output submodules, reads
in COMMONS, opens all Frame II files and
initializes the test green color table.

34 INIT3 clears appropriate COMMON areas, opens the
necessary input files stored on disk and reads
selected input data.

128

Module Description
35 INPUT reads three data files needed by the Scene

Generator Modules: the Visual Parameter file,
the Environment Data Base Header file and the
Color/Light Parameter file. These files are
used to build the intermodule COMMON's that
provide other modules with necessary data.
Using the REED submodule, actual disk accesses
are transparent to the INPUT submodule, allowing
data to be taken from the disk files in smaller
blocks only as needed.

36 LNGLAT creates a nadir to geocentric rotation matrix
based on longitude and latitude and converts the
viewpoint from longitude, latitude, and altitude
to feet from the earth's center.

57 LOD selects data blocks to be processed based on
level of detail and coarse region.

38 LR2 processes two-edge left/right cases as decoded
by subfunction DECODE. Processing will be of
edge set parameters.

39 LSTOUT writes a last face record to the active face
list.

40 MAPNDX calculates the proper index into the AMAP and
NAMAP arrays, based upon face number.

41 MDCLR2 is the third part of a three part group that
modifies the data in a disk file. This part
closes out those buffers and files that the
first two parts may have used.

42 MMFAD calculates the 3-D fading coefficients and
colors for all moving models in the data base.

4J MODCLR closes out the buffers and files that have been
modified by submodule MODIFY.

44 MODCNT computes the model/object count for 3-D face
group; generates a list of model numbers in
ascending order and computes object counts for
each model in the group.

45 MODFY2 second of a three part group to modify data in a
disk file. From the information set up by
MODST2 (index, absolute address, record number
and the data in the record), this submodule will
modify, clean up data, store in as many buffers
as needed, and then write them to the correct
data disk file.

46 MODIFY modifies a data file by reading in a buffer of
data, modifying it, and writing it back out to
the disk at its originally read location.

47 MODRD performs the necessary calculations to determine
how much data to be modified should be moved
from the I/O buffer to the buffer used to modify
the data.

129

Module Description
48 MODSET modifies disk resident data in the same way main

memory resident data is modified.
49 MODST2 is the first of a three-part group of modules

that will modify data in a disk file. This
module checks for index out of bounds,
determines absolute address, gets the record
number, reads the file and stores it for MODFY2.

50 MODULA sets the modulation and fading select codes for
each of the three colors in the visible edge
data set.

51 MOVE moves one matrix into another.
52 MULT multiplies two matrices and returns the result

in a third matrix.
55 NEWBLK initializes pointer variables and reads in a new

priority data block when the active block number
is changed; determines the model counts for all
the models in the block.

54 NEWED determines model number, object number, terrain
face flags, computes edge control word, puts it
into temporary buffer, and arranges data to fit
temporary active face list.

55 NEWPL adds a new point light to the appropriate edge
data word and updates necessary control files.

56 NSEDGR moves an edge data set from common areas GEN and
EDREL to common area NSEDGE.

57 NSOUT moves data from common area NSTABL to common
area PRVP.

58 NSRSLV receives edges one at a time from NSEDGR and
puts them in a table based on priority-right.

59 ORDER generates a list by ordering incoming values in
ascending order.

60 OVERID overrides the case type results from the DECODE
subfunction when valid edge, collapsed edge, and
certain flag conditions are met.

61 PARSEL controls the overall selection process of
choosing edge parameters.

62 PATPRO calculates delta I - JN dependent coefficients
for output to the video processor.

63 PPCNT processes separation plane data and generates
the counts for a specified group.

64 PPFPL assigns the absolute face priority numbers based
on data from the active face list, active model
list, used model/overlay numbers list, the
priority data memory and the universal objects
relative priority list.

65 PPINP interfaces between data as stored on disk and as
needed by the FRAME2 and FRAME3 submodules
through the priority processor submodules; saves
priority information for universal features.

130

Module Description
66 PPLIST creates various lists by cycling Through the

active face list and recording the appropriate
information; generates the highest priority
count for faces at given terrain face values.

67 PPMSG displays a specified error message.
68 PPSORT generates an ordered list of keys so that the

corresponding values are in ascending order.
69 PPUOL creates the universal objects relative priority

list used in assigning absolute priority numbers
in submodule PPFPL.

70 PRAPLU updates the next active priority list based on
the next ordered edge data for the current
raster line.

71 PRAREA calculates the area in the raster line element
to the right of the edge whose J-left intercept
intersects a top or bottom boundary of the
element.

72 PRAUPD updates the element area calculation for each
valid edge in the edge load store.

73 PRCLR clears the memory pointers and flags.
74 PRDMP writes out the data from designated common areas

generated in FRAME II.
75 PREDGR dissects the edge flag word and stores the

unpacked flags and data in individual data words
contained in common area PREDGR.

76 PREEFS processes edges tagged as an equal edge by the
edge selection.

77 PRELOD cycles through the top two priority level of
edges in the edge select memory.

78 PREPD determines the two or three highest priority
levels extant in the active and transition
priority list.

79 PRESEL selects an additional edge which intersects the
current raster line element for each priority
level currently retained in the transition
priority list.

80 PRFBKU simulates the read-write function of the
fallback memory.

81 PRINIT clears the processing flags and main memory
areas.

82 PRIPRO cycles through the active face list to form the
used overlay numbers/models numbers list, the
active models list, the active universal objects
range/count lists, and counts the number of
faces at each possible terrain face range value
by use of other submodules.

83 PRIRSV calls the submodules that constitute the
priority resolver process.

84 PRNEFS categorizes the non-equal edge sets in the edge
load store into three cases for modification.

131

Module Description
85 PRNXTO performs face modification for equal A edges and

equal B edges and then ascertains if the A edges
are next to the top/bottom of the raster line.

86 PROUT gathers data to be stored in common area PRVP
for later use by the video processor.

87 PRSTOR transfers the edge data to be processed from the
edge select memory to the edge load store
memory.

88 PRTPLU selects from a large number of edges the eight
best edges that intersect the current raster
line at a single element.

89 PRVIS prints the contents of the common area PRLD.
90 PTCAL obtains point light relative addresses, light

characteristics, number of lights per string,
rotates light vertex to proper window, and adds
new point light to edge data word file.

91 PTCLR2 outputs and clears buffer.
92 PTLGEN simulates the point light generator for use with

the camera station.
93 PTLSIT retrieves FRAME2 point light data from the disk

and places it in a temporary disk file.
94 PUT writes data out to a disk file in such a way

that the disk access is transparent to the
calling program.

95 PUT2 transfers data to system disk after arranging
data to exactly fill a disk sector.

96 PUTCLR clears the output buffer to the disk file.
97 PUTSET clears the output buffer to be filled by

subsequent calls from the PUT submodule.
98 PUTST2 sets a pointer to the beginning of the storage

buffer, checks to see if all locations in the
buffer have been processed, and if so, clears
the entire buffer.

99 RAMOUT transfers color intensity data generated in the
FRAME III process to buffers and then to the
display device.

100 RAMSET initializes the display device.
101 RDBLK reads in a new priority data block according to

block type and block number.
102 REED regulates the reading of data off of a disk file

by calling the system subroutine SYSIO and
keeping track of and updating the sector and
word pointers.

103 REED2 reads data supplied from SETRD2 into buffers
equal in size to a disk sector.

104 ROTMAT creates a direction cosine matrix via attitude
rotation.

105 RSTPED retrieves a number of edge data word sets for
processing by the Edge Generator submodule.

132

Module Description
106 RSTPLT retrieves point light data words from a buffer

and stores them in common.
107 SAVELT takes point light data from a common area and

transfers the data to another area for later
storage.

108 SCGEN sets up the necessary data files and organizes
the environment data for the other modules;
performs the executive function of controlling
the other modules in the task.

109 SELDMP dumps all values of the module's variables to
the line printer.

110 SETFIL sets up the disk data files by using the system
subroutine OPENW to open the files.

111 SETRD sets up the necessary pointers to begin reading
the appropriate disk file; performs the initial
read; saves the sector number and relative word
address in the sector for subsequent calls by
the submodule REED.

112 SETRD2 determines an absolute address based upon
relative address and resolution; reads the file
into a buffer.

113 SINGS processes single edge cases as decoded by
subfunction DECODE.

114 STPED retrieves a number of edge data word sets for
processing by the Edge Generator submodule.

115 STPLT retrieves point light data word sets for
processing by the point light generator
subroutine.

116 TB2 processes two-edge top/bottom cases as decoded
by subfunction DECODE.

117 TMULT multiplies a transposed matrix by a second
matrix and returns the result in a third matrix.

118 TRANS transposes a matrix and returns the result in
another matrix.

119 TSBNST determines texture/shading base number set type.
120 TSBSNO calculates texture/shading base number

calculation.
121 TSDBN calculates base number per element change.
122 TSEA calculates texture element area.
123 TSEDA detects edge of texture area.
124 TSEDGR reads next edge into texture/shading routine.
125 TSEMOV moves pattern word data to current edge common

area.
126 TSESP performs all texture/shading calculations for an

element set.
127 TSINIT initializes texture/shading calculations at

start of line.
128 TSLOD calculates level of detail.
129 TSLODS selects texture level of detail.

133

Module Description
130 TSMUX multiplexes texture/shading output.
131 TSPINC generates texture pattern-incrementer output.
132 TSSHAD processes shading information.
133 TSTXMD processes texture modulation, smoothing, and

summation functions.
134 TTMUL multiplies two transposed matrices and returns

the result in a third matrix.
135 TVEC multiplies a transposed matrix and a vector and

returns the result in a second vector.
136 UPDATE updates the common data file by using the

interval submodule SETFIL and modifying the data
for use by FRAME3.

137 VEC multiplies a matrix and a vector and stores the
results in a second vector.

138 VIDOUT invokes the submodule RAMOUT to supply data to
the display device for each raster line as the
processing for that line is completed.

139 VIDPRO calls the subfunctions that constitute the video
processor routine.

140 VPAINC compresses the colors and subtended areas of two
edge data functions, A and B for each line
element over the interval that the given edge
word is active; a third color C is included for
the remaining area.

141 VPCFC combines face colors using current element
areas.

142 VPFADE determines coefficients, horizon flags, and
multiplies 3 areas in current element.

143 VPIFLD initializes the fading range for ground and sky
for the upper left corner, transferred only per
field line.

144 VPILN updates pointers and resets fade ranges for a
new line, and determines horizon flag.

145 VPLNDL simulates the directional illumination envelope
associated with landing lights.

146 VPLTC retrieves the color and area of any point light
in current element.

147 VPMLF merges light colors with face colors and puts
final color into output line buffer.

148 VPSIMP processes the simplified video processor
functions.

149 VPTEX provides the interface between the video
processor and the texture generator.

150 VTP performs channel assignment on faces, clusters,
and regions and rotates vertices; in Frame I it
is used to determine whether regions/subregions
will be visible.

134

Module Description
151 WINDOW calculates the window boundary constants used to

determine whether data will be visible in the
view window.

152 WNDDMP dumps header data for each edge crossing within
user specified values.

155 WRTFPL dumps the absolute face priority list to an
output file.

135

Appendix C

Collected Data on Variables

136

Appendix C

The data in this appendix represents the data collected
regarding the type and quantity of each type of variable in
each of the six main programs. It is arranged in six
tables. Each table has six columns as follows:

SYMBOL name of the variable as found in the programs

T indicates the type of variable as follows:
C Character
I Integer
L Logical
R Real

S size of the variable in bytes

DIMN dimension of the variable

LOCATI location of the variable in memory. This will
be the name of a COMMON block or a program if
it is local.

TOTAL total memory required for the storage of this
variable

137

SYMBOL T S DIMN# LOCATI TOTAL# Table C-i: Variable List
for FACCOM

BUFF I 4 320 BFRM 1280 (Sheet 1 of 2)
D.AA I 4 1 FACCOM 4
D.AA I 4 1 MODSET 4
FILE1 R 8 1 FACCOM 8
FILE2 R 8 1 FACCOM 8
I 1 4 i FACCOM 4
I 1 4 1 MODSET 4
IABSAD I 4 1 MODSET 4
IARG I 4 1 MODSET 4
IARG I 4 1 SETFIL 4

IB I 4 3600 FACCOM 14400
Ic 1 4 i FACCOM 4
ICON I 4 1 FACCOM 4
ID I 4 1200 FACCOM 4800
IELAP I 4 1 FACCOM 4
IFACN I 2 4096 8192
IFACT 1 4 1 4
IFN I 4 1 FACCOM 4

IMIN I 4 1 FACCOM 4

INDAFN I 2 10000 FACCOM 20000
INX I 4 1 FACCOM 4
IPROC I 4 1 MODSET 4
IREC I 4 5 BFRM 20

IRFC I 4 1 MODSET 4
IRX I 4 1 MODSET 4

ISEC I 4 1 FACCOM 4

ISTAT I 4 1 MODSET 4
ISTAT I 4 1 SETFIL 4
ISTIM I 4 3 FACCOM 12

IT 1 4 i FACCOM 4
ITIM I 4 3 FACCOM 12

IUP I 4 1 MODSET 4
IX 1 4 5 BFRM 20
Ji 1 4 1 MODSET 4

JARG I 4 1 MODSET 4
JPROC I 4 1 MODSET 4
JREC I 4 1 MODSET 4
JRFC I 4 1 MODSET 4
JX 1 4 1 MODSET 4
K 1 4 1FACCOM 4
K 1 4 1MODSET 4
KARG I 4 1 MODSET 4

LARG I 4 1 MODSET 4
LEFT I 4 1 MODSET 4
LPCT I 4 1 MODSET 4

M 1 4 1FACCOM 4
MSKE I 4 1 FACCOM 4
MSKL I 4 1 FACCOM 4
N 1 4 1 MODSET 4

NMED I 4 1 FACCOM 4
NNSEC I 4 1 FACCOM 4
NOEDG I 4 1 FACCOM 4

NOSET I 4 1 FACCOM 4 158

SYMBOL T S DIMN# LOCATI TOTAL# Table C-i: Variable List
---- - - --- -- ---- -- --- for FACCOM

NOW 1 4 1 FACCOM 4 (Sheet 2 of 2)
NSEC 1 4 1 FACCOM 4
RSLTN 1 4 6 MODSET 24
TBLK 1 4 5 MODSET 20
XXX R 4 1 FACCOM 4

TOTAL

SIZE 236
DIMN 19,290
TCTAL 48,976

139

SYMBOL T S DIMN LOCATI TOTAL Table C-2: Variable List
for FRAMEl

A 1 4 1 LNGLAT 4 (Sheet 1 of 10)
ACTREG 1 4 281 ABLIST 1124
AK R 4 1 FIXDT 4
ATT R 4 3 FRM1 12
AZIM R 4 1 FRM1 4
BLKAMT I 4 8 LOD 32
BLNFLG L 4 1 OPTNS 4
BUFF I 4 320 BFRI 1280
BUFF I 4 320 BFRM 1280
BUFF I 4 320 BFRO 1280
C I 4 3 MMFAD 12
C 1 2 1 VTP 2
Cl R 4 1 FIXDT 4
C1 R 4 1 ROTMAT 4
C2 R 4 1FIXDT 4
C2 R 4 1 ROTMAT 4
C3 R 4 1FIXDT 4
C3 R 4 1 ROTMAT 4
C4 R 4 1FIXDT 4
CI R 4 1 WINDOW 4
CJ R 4 1 WINDOW 4
CLC I 4 18 FRiD 72
CNV R 4 1 FRAME1 4
COLOR R 4 768 TABLS 3072
COS R 4 1 LNGLAT 4
CSI I 2 6 FRiD 12
CTHEP R 4 1 VTP 4
CTHETA R 4 1 VTP 4
CV R 4 i FRMI 4
CW R 4 1 FRM1 4
D R 8 i FRAME1 8

D R 8 1 LNGLAT 8

D.AA I 4 1 FADCMP 4
D.AA I 4 1 FRAME1 4
D.AA 1 4 i LOD 4
D.AA I 4 1"MMFAD 4
D.AA I 4 1 MODSET 4
D.AA I 4 1 MULT 4
D.AA 1 4 i PUT 4
D.AA 1 4 1 VTP 4
D.AB I 4 1 FADCMP 4
D.AB 1 4 I MULT 4
D.BA I 4 1 FRAME1 4
D.BA I 4 1 LNGLAT 4
D.BA 1 4 1 MULT 4
D.BB I 4 1 FRAME1 4
D.BB I 4 1 MULT 4
D.BC I 4 1 FRAME1 4
D.CA I 4 1 FRAME1 4
D.CA I 4 1 MULT 4
D.CB I 4 1 FRAME1 4
D.CC I 4 1 FRAME1 4
DF R 4 1 MMFAD 4 140

SYMBOL T S DIMN LOCATI TOTAL Table C-2: Variable List

DF1B R 4 1 FADE 4 for FRAMEl

DF1T R 4 1 FADE 4 (Sheet 2 of 10)
DFIT R 4 i FADE 4
DF2 R 4 1 FADE 4
DF2MAX R 4 1 FADCMP 4

DFG R 4 1 FADCMP 4
DFP R 4 1CPFM 4
DFS R 4 1 FADCMP 4
DIR I 2 1686 DRCT 3372
E R 4 1 FRAME1 4
E R 4 1 LNGLAT 4
EDGFLG L 4 1 OPTN5 4
ELEV R 4 1 FRM1 4
EOF 1 4 1 REED 4
ERRMSG I 4 1 MISC 4
F 1 2 1 VTP 2
FIRFLG L 4 1 OPTNS 4
FADFLG L 4 1 OPTNS 4
FILE R 8 2 FRAME1 16
FOPG R 4 1 VPFM 4
FOPS R 4 1 VPFM 4
FRIEDB I 4 2304 FRID 9216
FVPG R 4 1 VPFM 4
FVPS R 4 1 VPFM 4
FWPG R 4 1 VPFM 4
FWPS R 4 1 VPFM 4
GND 1 2 3 VPFM 6
HAZG 1 2 3 VPFM 6
HAZS 1 2 3 VPFM 6
HF R 4 1 WINDOW 4
HFOV R 4 1 FRMI 4
I I 4 1 FRAMEI 4
I 1 4 1 LNGLAT 4
I 1 4 1 MODSET 4
I 1 4 i MULT 4
I 1 4 1 PUT 4
I 1 4 i REED 4
I 1 4 1 VTP 4
10 I 4 1 FRMI 4
IOP R 4 1 WINDOW 4
IA I 4 1 ABLIST 4
IABSAD I 4 1 MODSET 4
IABSAD I 4 1 SETRD 4
IAFW I 4 1 FRAMEi 4
IARG 1 4 1 LOD 4
IARG I 4 1 MODSET 4
IARG 1 4 1 PUT 4
IARG 1 4 1 REED 4
IARG I 4 1 SETFiL 4
IARG I 4 1 SETPD 4
IBEG I 4 1 FRAME! 4
IBFLG L 4 1 VTPLT 4
IBNUM I 4 1 FRAME1 4
ICHAN I 4 1 OPTNS 4 141

SYMBOL T S DIMN LOCATI TOTAL Table C-2: Variable List
for FRAME1

ICHASS L 4 1 VTPDT 4 (Sheet 5 of 10)
ICHFLG L 4 1 VTPDT 4

ICOSYS I 4 1 MISC 4

ICT 1 4 i LOD 4

IEADUF I 4 1 UNFDT 4

IEF 1 4 1MISC 4

IELAP I 4 1 FRAME1 4
IEND I 4 1 FRAME1 4

IFADUF I 4 1 UNFDT 4

IFOGC I 4 3 CPFM 12

IFXLOD I 4 1 OPTNS 4

IGNDC I 4 3 CPFM 12

IHAZC I 4 3 CPFM 12
IHLD I 2 128 FRAME1 256

IK 1 4 1 VTP 4

ILOD I 4 1 VTPDT 4

IMIN I 4 1 FRAME1 4
IMODEL I 4 1 VTPDT 4

INCT I 4 6 VTPDT 24
IPA I 4 1 FRAME1 4

IPB I 4 1 FRAME1 4
IPROC I 4 1 MODSET 4

IPROC 1 4 i PUT 4

IPROC I 4 1 REED 4

IPROC I 4 1 SETRO 4

IRC I 4 1 FRID 4

IREC I 4 5 BFRI 20

IREC I 4 5 BFRM 20
IREC I 4 5 BFRO 20

IRFC I 4 1 MODSET 4

IRFC 1 4 1 PUT 4
IRFC 1 4 1 REED 4
IRFC I 4 1 SETRD 4

IRX I 4 1 MODSET 4

IRX 1 4 1 SETRD 4

ISEC I 4 1 FRAME1 4

ISKYC I 4 3 CPFM 12

ISPF 1 4 1VTP 4
ISPL 1 4 1VTP 4
ISTAT I 4 1 FRAME1 4
ISTAT I 4 1 MODSET 4
ISTAT 1 4 1 PUT 4

ISTAT I 4 1 REED 4
ISTAT I 4 1 SETFIL 4
ISTAT I 4 1 SETRD 4
ISTIM I 4 3 FRAME1 12

ITADUF I 4 1 UNFDT 4

ITEMP I 4 1 FRAME1 4
ITIM I 4 3 FRAME1 12
IU 1 4 1 UNFDT 4

IUP I 4 1 MODSET 4
IUP 1 4 1 PUT 4

IUP 1 4 1 REED 4 142

SYMBOL T S DIMN LOCATI TOTAL Table C-2: Variable List
for FRAME1

IX I 4 5 BFRI 20 (Sheet 4 of 10)
IX I14 5 BFRM 20

IX 1 4 5 BFRO 20
J 1 4 1 FRAME1 4

J 1 4 1LNGLAT 4

J 1 4 1 LOD 4
J 1 4 1MULT 4

JO I 4 1 FRM1 4

JOp R 4 1 WINDOW 4
Ji 1 4 1 MODSET 4
Ji 1 4 i PUT 4
Ji 1 4 1 REED 4

JARG I 4 1 MODSET 4
JARG 1 4 1 PUT 4
JARG 1 4 1 REED 4
JARG I 4 1 SETRD 4
JCT 1 4 i LOD 4

JEL 1 4 1 JWIN 4
JER 1 4 1 JWIN 4
JPROC I 4 1 MODSET 4

JREC I 4 1 MODSET 4
JREC 1 4 1 REED 4
JREG I 4 1 FRAMEl 4

JRFC I 4 1 MODSET 4

JSSW I 4 1 MISC 4
JX 1 4 1 MODSET 4
Jx 1 4 1 PUT 4
JX 1 4 1 REED 4

K 1 4 1 FADCMP 4

K I 4 1 FRAME1 4
K 1 4 1 MMFAD 4

K 1 4 1 MODSET 4
K 1 4 i MULT 4

K 1 4 1 PUT 4

K 1 4 1 REED 4

KA 1 4 1LOD 4

KARG I 4 1 MODSET 4
KARG 1 4 1 PUT 4
KGND R 4 1 VPFM 4
KI R 4 1 FRMI 4
KIJ R 4 4 FIXDT 16
KIMIO R 4 1 FIXDT 4
KIPIO R 4 1 FIXDT 4

KJ R 4 1 FRM1 4

KJMJO R 4 1 FIXDT 4
KJPJO R 4 1 FIXDT 4
KL R 4 3 VTPDT 12

KLDF R 4 1 VTPDT 4

KLDREZ R 4 1 VTP 4

KLE R 4 1 VTPDT 4
KLM R 4 1 VTPDT 4

KLMREP R 4 1 VTP 4

KLOD I 4 1 FIXDT 4 143

SYMBOL T S DIMN LOCATI TOTAL Table C-2: Variable List
for FRAMEl

KLOR R 4 1 VTP 4 (Sheet 5 of 10)
KLORRF R 4 1 VTP 4
KLTAB R 4 16 FIXDT 64
KLX R 4 1VTPDT 4
KLY R 4 1VTPDT 4
KL2 R 4 1VTPDT 4
KM 1 4 I FRAME1 4
KMAX R 4 1 FADCMP 4
KMU R 4 1 FIXDT 4
KMV R 4 1 FIXDT 4
KMW R 4 1 FIXDT 4
KN 1 4 1 FRAME1 4
KPU R 4 1 FIXDT 4
KPV R 4 1 FIXDT 4
KPW R 4 1 FIXDT 4
KRASH I 2 1 VPFM 2
KS R 4 1FRM1 4
KSC R 4 3 VTPDT 12
KSCX R 4 1 VTPDT 4
KSCY R 4 1 VTPDT 4
KSCZ R 4 1 VTPDT 4
KSF R 4 1 VTPDT 4
KSKY R 4 1 VPFM 4
KUVW R 4 6 FIXDT 24
KV R 4 1 FRMI 4
KV R 4 1VTPDT 4
KW R 4 1 FRM1 4
LARG I 4 1 MODSET 4
LAT R 8 1 LNGLAT 8
LEFT I 4 1 MODSET 4
LEFT 1 4 1 PUT 4
LEFT 1 4 1 REED 4
LN 1 4 1 MISC 4
LN R 4 1MISC 4
LO 1 4 1MISC 4
LO R 4 1MISC 4
LOCFLG L 4 1 OPTNS 4
LODMOD L 4 1 OPTNS 4
LONG R 8 1 LNGLAT 8

LPCT I 4 1 MODSET 4
LPCT 1 4 1 PUT 4
LPCT 1 4 1 REED 4
LSP 1 4 1 MISC 4
LSP R 4 1MISC 4
LST 1 4 1 MISC 4
LST R 4 1 MISC 4
LTPARM R 4 2816 TABLS 11264
LUCMN I 4 1 FRAME1 4
LUREG I 4 1 FRAMEI 4
M 1 4 1 PUT 4
M 1 2 1VTP 2
MAXRNG R 4 8 MISC 32
MGKL R 4 1 VTP 4 144

SYMBOL T S DIMN LOCATI TOTAL Table C-2: Variable List
for FRAMEl

MINRNG R 4 8 MISC 32 (Sheet 6 of 10)
MK R 4 1 FIXDT 4

MKASG R 4 1 VTP 4

MKASN R 4 1 VTP 4

MMAT R 4 21 MMDAT 84

MMC R 4 21 MMDAT 84

MMN R 4 9 FRAME1 36

MMPOS L 4 1 OPTNS 4

MODEL I 2 1 FRAME1 2

MSTAR R 4 9 WNDW 36

N 1 4 1 MODSET 4

N 1 4 1 PUT 4

NA 1 4 i FRAME1 4

NC 1 4 i FRAMEI 4

NE 1 4 1FIXDT 4

NE R 4 1 FIXDT 4

NFSUM I 4 1 FIXDT 4

NFSUM R 4 1 FIXDT 4

NFU R 4 1 VTP 4

NFV R 4 1VTP 4

NFW R 4 1 VTP 4

NFX R 4 1 VTPDT 4

NFY R 4 1 VTPDT 4

NFZ R 4 1 VTPDT 4

NG R 4 9 WNDW 36

NL I 4 1 FIXDT 4

NL R 4 1FIXDT 4

NLOD I 4 1 VTPDT 4

NNSEC I 4 1 FRAME1 4

NOB I 4 1 FRAME1 4

NOEDB I 4 1 FRID 4

NP R 4 1 VTP 4

NP2 R 4 1VTP 4

NSEC I 4 1 FRAME1 4

NSXNVX R 4 1 VTP 4

NSYNVY R 4 1 VTP 4

NSZNVZ R 4 1 VTP 4

NV R 4 3 VTPDT 12

NVP I 4 9 FIXDT 36

NVP R 4 9 FIXDT 36

NVX R 4 1 VTPDT 4

NVY R 4 1 VTPDT 4

NVZ R 4 1 VTPDT 4

OFF 1 4 1 LOD 4

P R 4 1VTPDT 4

P1 R 4 1FADCMP 4

P1 R 4 1 MMFAD 4

P2 R 4 1 FADCMP 4

P2 R 4 1MMFAD 4

P3 R 4 1 FADCMP 4

P3 R 4 1MMFAD 4

PF R 4 1VTP 4

PH R 4 1 ROTMAT 4 145

SYMBOL T S DIMN LOCATI TOTAL Table C-2: Variable List
for FRAMEl

PL R 4 6 VTP 24 (Sheet 7 of 10)
PREM R 4 9 FRAME1 36
PS R 4 1ROTMAT 4

PTLFLG L 4 1 OPTNS 4

R R 4 1 VTPDT 4

R12NM R 4 1 FRAME1 4
R2 R 4 1 VTP 4

RADCNV R 8 1 LNGLAT 8

RADCNV R 4 1 ROTMAT 4

RADCNV R 4 1 WINDOW 4
RB R 4 1 FRM1 4

RB R 4 1VTPDT 4

RBF L 4 1 VTPDT 4

RBOR R 4 1 VTP 4

RE 1 4 i FRAME1 4

RE R 4 1 VTP 4

REGCT I 4 1 FRID 4

RERG R 4 1 VTP 4

RF R 4 1 VTP 4

RF2 R 4 1VTP 4
RG R 4 1VTP 4

RL R 4 1 FRMI 4
RMAX R 4 1VTP 4

RMID R 4 1 FRAME1 4

RMRERF R 4 1 VTP 4

RMRERG R 4 1 VTP 4

RNG R 4 1 VTPDT 4

RP R 4 3 FIXDT 12

RPC R 4 3 FIXDT 12

RPCX R 4 1 FIXDT 4

RPCY R 4 1 FIXDT 4

RPCZ R 4 1 FIXDT 4

RPMM R 4 3 FRAME1 12

RPP R 4 3 VTPDT 12

RPX R 4 1 VTPDT 4

RPY R 4 1 VTPDT 4

RPZ R 4 1 VTPDT 4
RR R 4 1FRM1 4

RRB R 4 1VTPDT 4

RS R 4 1 VTPDT 4

RSLTN I 4 6 MODSET 24
RSLTN I 4 6 SETRD 24

RT R 4 1 FRMI 4

RTST R 4 1 VTP 4

Si R 4 1 ROTMAT 4

S2 R 4 i ROTMAT 4

53 R 4 1 ROTMAT 4

SG R 4 1 VTP 4

SIN R 4 1 LNGLAT 4
SKY 1 2 3 VPFM 6
SN R 4 3 FRM1 12

SN R 4 1VTP 4

SSW L 4 32 SSWTCH 128 146

SYMBOL T 5 DIMN LOCATI TOTAL Table C-2: Variable List
------ - - - - -for FRAMEl
SV R 4 3 FIXDT 12 (Sheet 8 of 10)
SX R 4 1 FIXDT 4

SY R 4 1FIXDT 4
SZ R 4 1 FIXDT 4

T R 8 3 FRAME1 24
T R 4 i ROTMAT 4

TBLK I 4 5 MODSET 20

TBLK 1 4 5 PUT 20

TBLK I 4 5 REED 20

TBLK I 4 5 SETRD 20

TEXFLG L 4 1 OPTNS 4
TMI R 4 9 FRAME1 36

TM2 R 4 9 FRAME1 36

TMP R 4 1VTP 4

TXTAB i 4 3 MISC 12
UFAD I 4 16 UNFDT 64
UFC R 4 3 UNFDT 12
UFDC R 4 9 UNFDT 36
UFPROC L 4 1 UNFDT 4

UNITM R 4 9 LNGLAT 36

UOR R 4 3 VTPDT 12
UPX R 4 1 FIXDT 4

UPY R 4 1 FIXDT 4

UPZ R 4 1 FIXDT 4

URPRBR R 4 1 VTP 4

UVSWS R 4 9 FIXDT 36

UVSWSP R 4 9 VTPDT 36
UVW R 4 9 FRMI 36

UX R 4 1VTPDT 4

UXXOR R 4 1 VTP 4

UY R 4 1 VTPDT 4

UYYOR R 4 1 VTP 4

UZ R 4 i FRMI 4

UZ R 4 1VTPDT 4

UZZOR R 4 1 VTP 4

V 1 2 1 VTP 2
V R 4" 3 VTPDT 12

VF R 4 1 WINDOW 4

VFOV R 4 1 FRM1 4

VOR R 4 1 VTPDT 4

VORNEG R 4 1 VTP 4
VORPOS R 4 1 VTP 4

VP R 8 3 FRM1 24

VPN R 4 9 FRMI 36
VPX R 4 1 FIXDT 4
VPY R 4 1 FIXDT 4

VPZ R 4 1 FIXDT 4

VX R 4 1VTPDT 4

VX1 R 4 1 VTPDT 4

VXXOR R 4 1 VTP 4
VY R 4 1VTPDT 4

VY1 R 4 1 VTPDT 4

VYYOR R 4 1 VTP 4 147

SYMBOL T S DIMN LOCATI TOTAL Table C-2: Variable List
for FRAMEl

VZ R 4 1 FRMI 4 (Sheet 9 of 10)
vZ R 4 1 VTPDT 4
VZ1 R 4 1 VTPDT 4
VZZOR R 4 1 VTP 4
WND R 4 3 FRMi 12
WNDFLG L 4 1 JWIN 4
WOR R 4 1 VTPDT 4

WORNEG R 4 1 VTP 4
WORPOS R 4 1 VTP 4

WPX R 4 1 FIXDT 4
WPY R 4 1 FIXDT 4
WPZ R 4 1 FIXDT 4
WR R 4 1VTP 4
WS R 4 1 VTPDT 4
WVP R 4 9 FRAME1 36
WX R 4 1VTPDT 4
WXXOR R 4 1 VTP 4

WY R 4 1VTPDT 4
WYYOR R 4 1 VTP 4

WZ R 4 1 FRMI 4
WZ R 4 1 VTPDT 4

WZZOR R 4 1 VTP 4
X R 4 1 VTP 4
XM R 4 1 FRAME1 4
XOR R 4 1 VTP 4

XP R 4 1VTP 4

XPNFX R 4 1 VTP 4
XTMP R 4 20 FIXDT 80
Y R 4 1VTP 4
YM R 4 1 FRAME1 4
YOR R 4 1 VTP 4
YP R 4 1VTP 4
YPNFY R 4 1 VTP 4
Z R 8 1 LNGLAT 8
Z R 4 1 VTP 4
ZC R 4 1 FADE 4
ZG R 8 1FADCMP 8
zm R 4 i FRAME1 4

ZMIN R 4 1 FADE 4
zMM R 4 1 FRAME1 4

ZOR R 4 1VTP 4
ZP R 4 1VTP 4
ZPNFZ R 4 1 VTP 4
ZS R 8 1 FADCMP 8

ZSEA R 8 1 WNDW 8
ZVP R 8 1 FRAME1 8

148

TOTAL Table C-2: Variable List
--------------- frFAE
SIZE 1,906 (S ore 1 fR 10)
DIMN 9,812 (he 0o 0
TOTAL 35,644

149

SYMBOL T S DIMN# LOCATI TOTAL# Table C-3: Variable List- - - - - -for FRAME2

ABSFAN I 2 4096 F2WRK 8192 (Sheet I of 14)
ACLIST I 4 32 F2WRK 128

ACTREG I 4 128 FRAME2 512

AEXFL I 4 128 F2WRK 512

AFLG L 4 1 FACPRO 4

AFN 1 4 1 FACDT 4

AFNO I 4 1 EDGCAL 4

AK R 4 1FIXDT 4

ALPA R 4 1 FMOD 4

ALPH R 4 1FEP 4

ALPHA R 4 1 FEPDT 4

AMAP I 4 562 F2WRK 2248

ATT R 4 3 FRM1 12

AZIM R 4 1 FRM1 4

BE R 4 1 CPLITE 4

BETA R 4 1 FEPDT 4

BL R 4 1 CPLITE 4

BLND I 4 1 FACPRO 4

BLNFLG L 4 1 OPTNS 4

BMS R 4 1 CPLITE 4

BRDFLG L 4 1 EDGCAL 4

BUFF 1 4 4096 BFRI 16384

BUFF I 4 1024 BFRM 4096

BUFF I 4 4096 BFRO 16384

BUFF I 4 15 DLCAL 60

BUFF I 4 5 EDGCAL 20

BUFF I 4 5 FACOUT 20

BUFF 1 4 15 FACPRO 60

BUFF I 4 160 FRAME2 640

BUFF i 4 10 PTCAL 40

BUFFT I 4 15 FACPRO 60

BUFFV I 4 5 EDGCAL 20

C 1 2 1VTP 2

CF1 R 4 1 CPBLND 4

CF2 R 4 1 CPBLND 4

CKA R 4 1 CPLITE 4

CKB R 4 1 CPLITE 4

CLD R 4 1 CPBLND 4

CLR 1 2 3 COL 6

CLRF 1 2 3 COL 6

CLUF L 4 1 FRAME2 4

CLUST I 2 1 FRAME2 2

COLOR R 4 768 TABLS 3072

COLTAB I 4 10 COLT 40

CTHEP R 4 1 VTP 4

CTHETA R 4 1 VTP 4

CV R 4 1FRMI 4

CW R 4 1FRM1 4

D R 4 1FMOD 4

D.AA I 4 1 COL 4

D.AA I 4 1 CPBLND 4

D.AA I 4 1 CPFADE 4

D.AA I 4 1 CPLITE 4 150

SYMIBOL T 5 DINN# LOCATI TOTAL# Table C-3: Variable List
---- - - --- -- ---- -- --- for FRAME2

D.AA 1 4 1 EDWOUT 4 (Sheet 2 of 14)

D.AA 1 4 1 FRAME2 4

D.AA 1 4 1 MULT 4

D.AA 1 4 1 VTP 4

D.AB 1 4 1 CPBLND 4

D.AB 1 4 1 CPFADE 4

D.AB 1 4 1 MULT 4

D.BA I 4 1 FRAME2 4

D.BA 1 4 1 MULT 4

D.BA 1 4 1 PTCAL 4

D.BB 1 4 1 FRAME2 4

D.BB 1 4 1IIULT 4

D.CA 1 4 1 FRAME2 4

D.CA 1 4 1 MULT 4

D.CA I 4 1 PTCAL 4

D.DA I 4 1 FRAME2 4

D.EA 1 4 1 FRAME2 4

D2FLG L 4 1. FACOUT 4

D3FLG L 4 1 FACOUT 4

DFP R 4 1 CPFM 4

DLFLG L 4 1 FACPRO 4

DUPEDG L 4 1 FEPDT 4

ECW R 4 3600 OUT 14400

EDGFLG L 4 1 OPTNS 4

EDGMOD L 4 1 FEPDT 4

EDW I 4 1 EDWOUT 4

EG 1 4 1 EDGCAL 4

EGFLG L 4 1 FACPRO 4

ELEM1 R 4 1FEP 4

ELEM2 R 4 1 FEP 4

ELEML R 4 1 FEP 4

ELEMLX R 4 1 FEP 4

ELEMR R 4 1 FEP 4

ELEMRX R 4 1 FEP 4

ELEMT1 R 4 1 FEP 4

ELEMT2 R 4 1 FEP 4

ELEV R 4 1 FRM1 4

ERRMSG I 4 1 MISC 4

ETOL R 4 1 FMOD 4

EXF I 4 1 EDGCAL 4

EXFL. I 4 16 F2WRK 64

EXT I 4 1 EDGCAL 4

F R 4 1 CPFADE 4

F 1 2 1 VTP 2

F1RFLG L 4 1 OPTNS 4

FACE I 2 1 DLCAL 2

FACE 1 2 1 FACPRD 2

FACFLG I 4 1 FACPRO 4

FACL I 4 1 FACDT 4

FACR I 4 1 FACDT 4

FADFLG L 4 1 OPTNS 4

FILE R 8 6 INIT2 48

FILE R 8 1 UPDATE a 151

SYMBOL T S DIMN# LOCATI TOTAL# Table C-3: Variable List
for FRAME2

FORI R 4 1 FACPRO 4 (Sheet 3 of 14)

FORI R 4 1 FMOD 4

FORI R 4 1 MODST2 4

FORI R 4 1 NEWED 4

FORI R 4 1 NEWPL 4

FORI R 4 1 PUT2 4

FORI R 4 1 REED2 4

FORIP R 4 1 DLCAL 4

FORITF R 4 1 FACPRO 4

FORJ R 4 1 FACPRO 4

FORJ R 4 1 FMOD 4

FORJ R 4 1 INIT2 4

FORJI R 4 1 MODST2 4

FORJI R 4 1 PUT2 4

FORJ1 R 4 1 REED2 4

FORJR R 4 1 FACOUT 4

FORK R 4 1 DLCAL 4

FORK R 4 1 EDGCAL 4

FORK R 4 1 FACOUT 4

FORM R 4 1 EDGCAL 4

FORM R 4 1 PUT2 4

FORNED R 4 1 EDGCAL 4

FORNF R 4 1 FACPRO 4

GAMMA R 4 1 FEP 4

HFOV R 4 1 FRM1 4

HTOL R 4 I FEP 4

I 1 4 1 EDWOUT 4

I 1 4 1 FACPRO 4

I 1 4 1 FMOD 4

I 1 4 1 FRAME2 4

I 1 4 1 MODST2 4

I 1 4 i MULT 4

I 1 4 I NEWED 4

I 1 4 1 NEWPL 4

I 1 4 1 PUT2 4

I 1 4 1 REED2 4

I 1 4 1 VTP 4

IO 1 4 1FRM1 4

Ii I 4 1 FRAME2 4

IABF I 4 1 F2WRK 4

IABSAD I 4 1 MODST2 4

IABSAD I 4 1 SETRD2 4

IAC 1 4 1 F2WRK 4

IACLF I 4 16 RF 64

IARG I 4 1 MODST2 4

IARG 1 4 1 PUT2 4

IARG I 4 1 REED2 4

IARG I 4 1 SETFIL 4

IARG I 4 1 SETRD2 4

iB 1 4 1 FACPRO 4

IBFLG L 4 1 VTPDT 4

IBITWD I 4 1 NEWED 4

IBLC I 4 1 FACPRO 4 152

SYMBOL T 3 DIlIN# LOCATI TOTAL# Table C-3: Variable List

IBLK I 4 1 FACPRO 4 (Sheet 4 of 14)
IBLKIJO 1 4 1 BLSDT 4

IBLND I 2 1 COLDT 2

IBLTYP I 4 1 BLSDT 4

IBMBND I 4 1 FEP 4
T BNF 1 4 1 FEP 4
IBP 1 4 1 CPBLND 4

Ic 1 4 1 FRAME2 4

IC 1 4 3 NEWED 12

IC 1 4 3 FTEWPL 12

ICHAN I 4 1 OPTNS 4

ICHANT L 4 1 DLCAL 4

ICHASS L 4 1 VTPDT 4

ICHFLG L 4 1 VTPDT 4

ICL I 4 1 FRAME2 4

ICLCT I 4 1 FRAME2 4

ICLFAD I 4 1 FRAME2 4

ICOLN 1 4 1 COLT 4

ICOSYS I 4 1 MISC 4

ICT I 2 3 CPFADE 6

IDL 1 4 1 FACPRO 4

IDLi 1 4 1 DLCAL 4

IDLAD 1 4 1 DLCAL 4

IDRLAD 1 4 1 RBHDT 4

IDRLDI1I 4 1 DLCAL 4

IDUM 1 2 1 COL 2

IEADUF I 4 1 UNFDT 4

IECW 1 4 3600 OUT 14400

IEDGAD I 4 1 RBHDT 4

IEF I 4 1 MISC 4

IEGSAD I 4 1 EDGCAL 4

IELAP I 4 1 FRAME2 4

IEXTF 1 2 1 COLDT 2

IF1 I 2 1 COLDT 2

IF2 1 2 1 COLDT 2

IFACAD I 4 1 RBHDT 4
IFACPR I 4 1 FACOUT 4

IFADUF I 4 1 UNFDT 4

IFATYP I 4 1 FACOUT 4

IFBN 1 4 1 FRAME2 4

1FF 1 2 1iCOLDT 2

IFOGC I 4 3 CPFM 12

IFXLOD 1 4 1 OPTNS 4

IGNDC I 4 3 CPFM 12

IHAZC 1 4 3 CPFM 12

IHIB I 4 1 FEPDT 4

1K 1 4 1 VTP 4

ILBC R 4 1 FEPDT 4

ILFBND I 4 1 FEP 4

ILOD 1 4 1 VTPDT 4

IMIN I 4 1 FRAME2 4

IMODEL I 4 1 VTPDT 4

IMODNO I 4 1 FACOUT 4 153

SYMBOL T 5 DIMN# LOCATI TOTAL# Table C-11: Variable List
---- - - --- -- ---- -- --- for FRAME2

IN2FC 1 4 1 FEP 4 (Sheet 5 of 14)
INCT 1 4 6 VTPDT 24

INF I 4 1 FACPRO 4

INFV 1 4 1iFEP 4

INF.1 1 4 1 PEP 4

INFV1P 1 4 1 FEP 4

INFV2 1 4 1 FEP 4

INFV2P 1 4 1 FEP 4

INOFED 1 4 1 FACPRO 4
INXTBN 1 4 1 BLSDT 4

IOBJNO 1 4 1 FACOUT 4

10S 1 2 1 COLDT 2

IP 1 4 1 DLCAL 4

IP 1 4 1 FRAIE2 4

IPLCW 1 4 800 OUT 3200
IPROC 1 4 1 MODST2 4

IPROC 1 4 1 PUT2 4

IPROC 1 4 1 REED2 4
IPROC 1 4 1 SETRD2 4

IPTLAD 1 4 1 RBHDT 4
IPTLT 1 2 1 COLDT 2

IR 1 4 1 BLSDT 4

IRBC R 4 1 FEPDT 4

IRCLN 1 4 1 CLUSPR 4

IREC 1 4 8 BFRI 32

IREC 1 4 8 BFRII 32

IREC 1 4 8 BFRO 32

IREL 1 4 1 BLSDT 4

IRELFN 1 4 1 FACOUT 4

IREPI 1 4 1FEP 4

IREP12 1 4 1 FEP 4

IREP2 1 4 1 FEP 4

IREPL 1 4 1iFEP 4

IREPR 1 4 1 FEP 4

IRFC 1 4 1 MODST2 4

IRFC 1 4 1 PUT2 4

IRFC 1 4 1 REED2 4

IRFC 1 4 1 SETRD2 4

IRFNO 1 4 1 FACPRO 4

IRN 1 4 1 RBHDT 4

IRPLAD 1 4 1 PTCAL 4

IRSLTN 1 4 7 NDXTBS 28

IRTBND 1 4 1 FEP 4

IRX 1 4 1 MODST2 4

IRX 1 4 1 SETRD2 4

ISEC 1 4 1 FRAME2 4

ISFPTR 1 4 1 CLUSPR 4

ISKYC 1 4 3 CPFM 12
ISPF 1 4 1 VTP 4

ISPL 1 4 1 VTP 4
ISTAT 1 4 1 FRAME2 4

ISTAT 1 4 1 INIT2 4

ISTAT 1 4 1 MODST2 4 154

SYMIBOL T 3 DINN# LOCAT:! TOTAL# Table C-3: Variable List
---- - - --- -- ---- -- --- for FRAME2

ISTAT 1 4 1 PUT2 4 (Sheet 6 of' 14)
ISTAT 1 4 1. REED2 4
ISTAT 1 4 1 SETPIL 4
ISTAT 1 4 1 SE_ rD2 4

ISTAT 1 4 1 UPDATE 4

ISTIII 1 4 3 FRAIIE2 12

ITADUF 1 4 1 LNFDT, 4

ITAFL 1 4 1 F2WRK 4

ITEX 1£4 1 MODT 4

ITF 1 4 1 F2WRK 4

ITFR 1 4 1 FACCUT 4

ITFST 1 4 1 FACPRO 4

ITIM 1 4 3 FRAME2 12

ITNAF 1 4 1 F2SUM 4

ITNED 1 4 1 F2SUM 4

ITPBND 1 4 1 FEP 4

ITRN 1 4 1 EDCICAL 4

ITXF 1 4 1 FMOD 4

ITXPAD 1 4 1 EACPRO 4

ITXS 1 4 16 MODT 64

ITXTAD 1 4 1 R2.HDT 4
IJ 1£4 1 UNFDT 4

IlIAD 1 4 1 FRAME2 4

IUF I 4 1 FRAME2 4

IUFRAD 1 4 1 FRAME2 4

IUNFAD 1 4 1 RBHDT 4

Iup 1 4 1 MODST2 4

Iup 1£4 1 PUT2 4

1up 1£4 1 REED2 4
IVRTAD 1 4 1 EDGCAL 4

1w 1 4 1 FACPRO 4

Ix 1 4 8 BFRI 32

Ix 1£4 8 BFRM 32

Ix 1 4 8 BFRO 32

IXCOL I 4 1 FACDT 4

IXX I 4 1 FRAIIE2 4

J 1 4 1 DLCAL 4
3 1 4 1 FACPRO 4

J 1 4 1 FMOD 4
3 1 4 1 FRAIIE2 4

J I 4 1 INIT2 4

3 1 4 1 MULT 4

JO I 4 1 FRMI 4

31 1 4 1EDWOUT 4
31 R 4 1FEP 4
31 1 4 1lFRAME2 4

J2 1 4 1 EDWOUT 4
J2 R 4 1 FEP 4

J3 1 4 1 EDWOUT 4
J4 1£4 1 EDWOUT 4
J5 1 4 1 EDWOUT 4

JARG I 4 1 MODST2 4

JARG 1 4 1 PUT2 4 155

SYMBOL T 5 DIMN# LOCATI TOTAL# Table C-3: Variable List
------ - - -for FRAME2

JARG I 4 1 REED2 4 (Sheet 7 of 14)
JARG I 4 1 SETRD2 4

JBLK I 4 1 FACOUT 4

JLBC R 4 1 FEPDT 4

JMA I 4 1 FRAME2 4
JP 1 4 1 FRAME2 4

JPROC I 4 . MODST2 4

JR 1 4 i FACOUT 4

JRA I 4 1 FRAME2 4

JR3C R 4 1 FEPDT 4

JREC I 4 1 REED2 4
JRFC 1 4 1 MODST2 4

JSSW 1 4 1 MISC 4

JX 1 4 1MODST2 4

JX 1 4 1 PUT2 4

JX 1 4 1 REED2 4

K 1 4 I COL 4

K 1 4 1 CPBLND 4
K 1 4 1CPFADE 4

K 1 4 1 CPLITE 4
K 1 4 1DLCAL 4
K 1 4 1 EDGCAL 4

K 1 4 1FACOUT 4

K 1 4 i FACPRO 4

K 1 4 1 FRAME2 4
K 1 4 1MODST2 4

K 1 4 1 MULT 4
K 1 4 1 PTCAL 4
K 1 4 1 PUT2 4

K 1 4 1 REED2 4

KARG I 4 1 MODST2 4
KARG 1 4 1 PUT2 4

KEDG 1 4 1 OUT 4

KEDGT 1 4 1 OUT 4

KFAC I 4 1 EDGCAL 4

KI R 4 1 FRM1 4

KIJ R 4 4 FIXDT 16

KIMIO R 4 1 FIXDT 4
KINP R 4 12 MODT 48

KIPIO R 4 1 FIXDT 4
KJ R 4 1FRM1 4

KJMJO R 4 1 FIXDT 4

KJPJO R 4 1 FIXDT 4

KL R 4 3 VTPDT 12

KLDF R 4 1 VTPDT 4
KLDREZ R 4 1 VTP 4

KLE R 4 1VTPDT 4

KLIT 1 4 1 OUT 4
KLITT 1 4 1 OUT 4

KLM R 4 1 VTPDT 4

KLMREP R 4 1 VTP 4

KLOD I 4 1 FIXDT 4

KLOR R 4 1 VTP 4 156

SYMBOL T S DIMN# LOCATI TOTAL# Table C-3: Variable List
for FRAME2

KLORRF R 4 1 VTP 4 (Sheet 8 of 14)

KLTAB R 4 16 FIXDT 64
KLX R 4 1 VTPDT 4
KLY R 4 1VTPDT 4
KLZ R 4 1VTPDT 4

KMU R 4 1 FIXDT 4

KMV R 4 1FIXDT 4
KMW R 4 1 FIXDT 4

KNPN R 4 3 FMOD 12
KNPU R 4 3 FMOD 2
KP 1 4 1 FRAME2 4
KPU R 4 1 FIXDT 4
KPV R 4 1 FIXDT 4

KPW R 4 1 FIXDT 4

KS R 4 1 FRM1 4
KSC R 4 3 VTPDT 12
KSCX R 4 1 VTPDT 4

KSCY R 4 1 VTPDT 4
KSCZ R 4 1 VTPDT 4
KSF R 4 1 VTPDT 4

KUVW R 4 6 FIXDT 24
KV R 4 1VTPDT 4
LAST I 4 3 FACOUT 12

LCP I 4 1 CPLITE 4
LEFT I 4 1 MODST2 4
LEFT 1 4 1 PUT2 4
LEFT I 4 1 REED2 4

LF 1 2 1 COLDT 2

LFFLG L 4 1 FACPRO 4
LII R 4 1 FEP 4

L12 R 4 1 FEP 4

LINE1 R 4 1 FEP 4
LINE2 R 4 1 FEP 4
LINEL R 4 1 FEP 4
LINELX R 4 1 FEP 4

LINER R 4 1 FEP 4
LINERX R 4 1 FEP 4
LITTOT I 4 1 PTCAL 4

LN I 4 1 MISC 4
LO 1 4 1 MISC 4
LOCFLG L 4 1 OPTNS 4
LODMOD L 4 1 OPTNS 4
LP 1 4 1 EDWOUT 4

LPB L 4 1 FACPRO 4

LPCT I 4 1 MODST2 4
LPCT 1 4 1 PUT2 4
LPCT I 4 1 REED2 4

LPFLG L 4 1 FACPRO 4
LRGBNO I 4 1 BLSDT 4
LSP I 4 1 MISC 4
LST I 4 1 MISC 4
LTMOD 1 4 i COL 4

LTNENF I 4 1 PTCAL 4 157

SYMBOL T S DIMN# LOCATI TOTAL# Table C-5: Variable List
for FRAME2

LTNINH I 4 1 PTCAL 4 (Sheet 9 of 14)
LTOTEF I 4 1 PTCAL 4

LTOTIH I 4 1 PTCAL 4

LTPARM R 4 2816 TABLS 11264

LUN I 4 1 EDGCAL 4

LUT I 4 8 NDXTBS 32

M 1 4 1 EDGCAL 4
M 1 4 1 PUT2 4
M 1 2 1 VTP 2
MAXRNG R 4 8 MISC 32
MAXSIZ R 4 1 CPLITE 4
MCm 1 2 3 COLDT 6
MFN I 4 1 FRAME2 4
MGKL R 4 1 VTP 4
MINRNG R 4 8 MISC 32
MINSIZ R 4 1 CPLITE 4
MINSZF I 2 1 COLDT 2
MINUS I 4 1 EDWOUT 4

MK R 4 1FIXDT 4

MKASG R 4 1 VTP 4
MKASN R 4 1 VTP 4

MMPOS L 4 1 OPTNS 4

MN 1 4 1NEWED 4
MN 1 4 1 NEWPL 4
MNE I 4 1 EDGCAL 4

MNH 1 4 1 NEWED 4
MO 1 4 i NEWED 4
No 1 4 1 NEWPL 4
MODEL I 2 1 FRAME2 2

MODF L 4 1 FACPRO 4
MODRT L 4 1 NEWED 4
MOH 1 4 1 NEWED 4

MSKE I 4 1 EDWOUT 4
MSKL I 4 1 EDWOUT 4
MXEDG I 4 1 NEWED 4
MXLIT I 4 1 NEWPL 4

N 1 4 1 CPLITE 4

N 1 4 1 MODST'. 4
N 1 4 i NEWED 4
N 1 4 1 NEWPL 4

N 1 4 1 PUT2 4
NAA 1 4 i NEWED 4

NAFLG L 4 1 FACPRO 4
NAMAP I 4 562 F2WRK 2248
NE 1 4 1FIXDT 4
NE2 R 4 I FEP 4
NED I 4 1 EDGCAL 4
NEDG I 4 1 EDGCAL 4
NF 1 4 1 FACPRO 4
NF 1 4 I NEWED 4

NF 1 4 1NEWPL 4
NF R 4 3 VTPDT 12
NFl 1 4 1 FACDT 4 158

SYMBOL T S DIMN# LOCATI TOTAL# Table C-3: Variable List
... R 3F2for FRAME2

NFF R 4 3 FMOD 12 (Sheet 10 of 14)
NFG R 4 3 FMOD 12

NFSUM I 4 1 FIXDT 4

NFTOT I 4 1 FACDT 4
NFU R 4 1 VTP 4

NFV R 4 1 VTP 4

NFW R 4 1VTP 4

NFX R 4 1 VTPDT 4
NFY R 4 1 VTPDT 4
NFZ R 4 1 VTPDT 4

NHDR I 4 1 EDWOUT 4
NL 1 4 1 FIXDT 4
NLEL R 4 1 COLDT 4
NLIT I 4 1 PTCAL 4
NLOD I 4 1 VTPDT 4

NNSEC I 4 1 FRAME2 4
NOCLFA I 4 1 FRAME2 4

NOSR I 4 1 FRAME2 4

NP 1 4 1PTCAL 4

NP R 4 1VTP 4

NP2 R 4 1VTP 4

NPL 1 4 1 PTCAL 4

NPLS I 4 1 PTCAL 4

NSEC I 4 1 FRAME2 4

NSF1 I 4 1 FRAME2 4

NSXNVX R 4 1 VTP 4

NSYNVY R 4 1 VTP 4

NSZNVZ R 4 1 VTP 4

NTFF I 4 1 FACDT 4

NUF I 4 1 FRAME2 4
NV R 4 3 VTPDT 12

NVP I 4 9 FIXDT 36

NVX R 1 1 VTPDT 4
NVY R 4 1 VTPDT 4
NVZ R 4 1 VTPDT 4
NXF I 4 1 FACPRO 4
NXTFST I 4 1 FACPRO 4
P R 4 1 VTPDT 4
PO R 4 1 FMOD 4
PF R 4 1VTP 4
PL R 4 6 VTP 24
PLCW R 4 800 OUT 3200
PRTAB R 4 48 CLUSPR 192

PSEU R 4 2 FEPDT 8

PTLFLG L 4 1 OPTNS 4

R R 4 1 CPFADE 4
R R 4 1VTPDT 4
R2 R 4 1 COL 4
R2 R 4 1VTP 4

RA2 R 4 1 CPLITE 4

RB R 4 1FRM1 4
RB R 4 1VTPDT 4

RBF L 4 1 VTPDT 4 159

SYMBOL T S DIMN# LOCATI TOTAL# Table C-3: Variable List
for FRAME2

RBOR R 4 1 VTP 4 (Sheet 11 of 14)

RBUFF R 4 5 FACOUT 20

RCONST R 4 1 CPFADE 4

RDUM R 4 i COL 4
RE R 4 1VTP 4

RE2 R 4 1 CPLITE 4
RERG R 4 1VTP 4
RF R 4 1VTP 4

RF2 R 4 1VTP 4

RG R 4 1VTP 4

RI 1 4 1 EDGCAL 4

RJ 1 4 1 EDGCAL 4

RL R 4 1FRM1 4

RMAX R 4 1FEP 4

RMAX R 4 1VTP 4

RMRERF R 4 1 VTP 4
RMRERG R 4 1 VTP 4

RNG R 4 1 CPLITE 4
RNG R 4 1 VTPDT 4

RP R 4 3 FIXDT 12

RPI R 4 1 FRAME2 4

RPC R 4 3 FIXDT 12

RPCX R 4 1 FIXDT 4

RPCY R 4 1 FIXDT 4
RPCZ R 4 1 FIXDT 4

RPF L 4 1 CLUSPR 4

RPP R 4 3 VTPDT 12
RPX R 4 1 VTPDT 4
RPY R 4 1 VTPDT 4

RPZ R 4 1 VTPDT 4
RR R 4 1FRMI 4

RRB R 4 1 VTPDT 4

RS R 4 1VTPDT 4

RT R 4 1 FRM1 4
RTAFL R 4 2944 F2WRK 11776
RTST R 4 1 VTP 4
SG R 4 1 VTP 4
SLOPE R 4 1 FEPDT 4
SN R 4 3 FRM1 12

SN R 4 1 VTP 4
SNFLG L 4 . FACPRO 4

SPFLG L 4 1 FACOUT 4
SSW L 4 32 SSWTCH 128

STORE R 4 1 FEP 4
SV R 4 3 FIXDT 12

SX R 4 1FIXDT 4
SY R 4 1FIXDT 4

SZ R 4 1FIXDT 4
T16 R 4 1 CPLITE 4

TAFLST I 4 2944 F2WRK 11776
TBLK I 4 5 MODST2 20

TBLK I 4 5 PUT2 20
TBLK I 4 5 REED2 20 160

SYMBOL T S DIMN# LOCATI TOTAL# Table C-3: Variable List
---- - -for FRAME2

TBLK I 4 5 SETRD2 20 (Sheet 12 of 14)
TEXFLG L 4 . OPTNS 4
TFFLG L 4 1 FACOUT 4

TFFLG L 4 1 FACPRO 4
TFFLG L 4 1 NEWED 4

TFR R 4 1 FACDT 4

TFRTMP R 4 1 FACOUT 4

TMP R 4 1 VTP 4

TOL R 4 1 EDGCAL 4

TOL R 4 i FEP 4

TOLUP R 4 i FEP 4

TXS R 4 16 MODT 64

TXTAB I 4 3 MISC 12

U R 4 1 FRAME2 4

U1R R 4 i FEP 4

U2R R 4 i FEP 4

UFI I 4 1 FRAME2 4

UFAD I 4 16 UNFDT 64

UFC R 4 3 UNFDT 12

UFDC R 4 9 UNFDT 36

UFFLG L 4 1 FRAME2 4

UFPROC L 4 1 UNFDT 4

UM R 4 48 FEPDT 192

UNSHIL R 4 1 F.PDT 4

UNSHIR R 4 1 FEPDT 4

UNSHJL R 4 1 FEPDT 4

UNSHJR R 4 1 FEPDT 4

UOR R 4 3 VTPDT 12

UPX R 4 1 FIXDT 4

UPY R 4 1 FIXDT 4

UPZ R 4 1 FIXDT 4

URPRBR R 4 1 VTP 4

URTAB R 4 48 FRAME2 192

UVSWS R 4 9 FIXDT 36
UVSWSP R 4 9 VTPDT 36
UVW R 4 9 FRM1 36

UX R 4 1VTPDT 4

UXXOR R 4 1 VTP 4

UY R 4 1VTPDT 4
UYYOR R 4 1 VTP 4

t Z q 1 VTPDT 4

UZZOR R 4 1 VTP 4

V 1 2 1 VTP 2

V R 4 3 VTPDT 12

V1 R 4 3 FRAME2 12

ViP R 4 i FEP 4

VIR R 4 I FEP 4

V2P R 4 1FEP 4

V2R R 4 I FEP 4

VERT I 2 1 EDGCAL 2

VERT I 2 1 PTCAL 2

VFOV R 4 1 FRM1 4

VOR R 4 1 VTPDT 4 161

SYMBOL T S DIMN# LOCATI TOTAL# Table C-3: Variable List
-- - -- - - -- - - - - - -- for FRAME2

VORNEG R 4 1 VTP 4 (Sheet 13 of 14)

VORPOS R 4 1 VTP 4

VP R 8 3 FRM1 24
VPN R 4 9 FRM1 36

VPX R 4 1 FIXDT 4

VPY R 4 1 FIXDT 4

VPZ R 4 1 FIXDT 4

VR R 4 3 FMOD 12

VX R 4 1 VTPDT 4

VX1 R 4 1VTPDT 4

VXXOR R 4 1 VTP 4

VY R 4 1 VTPDT 4

VY1 R 4 1 VTPDT 4

VYYOR R 4 1VTP 4

VZ R 4 1 VTPDT 4

VZI R 4 1 VTPDT 4
VZZOR R 4 1 VTP 4

WIP R 4 i FEP 4

WIR R 4 1 FEP 4

W2P R 4 I FEP 4

W2R R 4 1 FEP 4

WND R 4 3 FRM1 12

WOR R 4 1 VTPDT 4

WORNEG R 4 1 VTP 4

WORPOS R 4 1 VTP 4

WPX " 4 1 FIXDT 4

WPY R 4 1 FIXDT 4

WPZ R 4 1 FIXDT 4

WR R 4 1 VTP 4

W5 R 4 1VTPDT 4
WX R 4 1 VTPDT 4

WXXOR R 4 1VTP 4

WY R 4 1 VTPDT 4

WYYOR R 4 1 VTP 4

WZ R 4 1 VTPDT 4

WZZOR R 4 1 VTP 4
X R 4 1VTP 4
XOR R 4 1 VTP 4
XP R 4 1 VTP 4

XPNFX R 4 1 VTP 4

Y R 4 1 VTP 4
YOR R 4 1 VTP 4

YP R 4 1 VTP 4

YPNFY R 4 1 VTP 4

Z R 4 1 VTP 4

ZOR R 4 1 VTP 4

ZP R 4 1 VTP 4

ZPNFZ R 4 1 VTP 4

162

TOTAL Table C-3: Variable List
for FRAME2

SIZE 2,698 (Sheet 14 of 14)
DIMN 34,398
TOTAL 129,376

163

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
--- - -f o r F R A M E 3

A I 2 1 DECODE 2 (Sheet 1 of 32)
A 1 4 1 PRFMOD 4

A 1 4 1 TSBNST 4

A 1 4 1 TSBSNO 4

A 1 4 1TSEMOV 4

AOE R 4 1 PREDGA 4

AOM R 4 18 PRESM 72

AOU R 4 4 PRLD 16

AOUK R 4 1 PRAUPD 4

Al R 4 1 VPAREA 4

AlA R 4 90 PRVP 360

AIB R 4 90 PRVP 360

AIE R 4 1 PREDGA 4

AlF R 4 1 VPAREA 4

AIKFC R 4 1 VPCFC 4

AIM R 4 18 PRESM 72

A1U R 4 4 PRLD 16

AIUK R 4 1 PRAUPD 4

A2 R 4 1 VPAREA 4

A2A R 4 90 PRVP 360

A2B R 4 90 PRVP 360

A2F R 4 1 VPAREA 4

A2KFC R 4 1 VPCFC 4

A2OBJ R 4 2 PROUTI 8

A3 R 4 1 VPAREA 4

A3F R 4 1 VPAREA 4

A3KFC R 4 1 VPCFC 4

AA R 4 1 VPAREA 4

AB R 4 1 VPAREA 4

ABSFAC I 2 256 EDGORD 512

ABSFAN I 2 4096 GEN 8192

ABSPRI R 4 256 EDREL 1024

ABVBK I 2 1 PRVIS 2

AC R 4 1 VPAREA 4

AE R 4 12 TSTXEV 48

AK R 4 1 FIXDT 4

AL R 4 1 VIDPRO 4

ALF R 4 40 PLGVP 160

ALFMAX R 4 1 TSLODS 4

ALFTL R 4 2 LOCAL 8

ALIM R 4 90 PRVP 360

ALL R 4 40 PLGVP 160

ALLTL R 4 2 LOCAL 8

ALM R 4 40 PLGVP 160

ALMTL R 4 2 LOCAL 8

ALPHA R 4 6 TSLODV 24

AM 1 2 1 PRFBKU 2

AM 1 4 1 PRFMOD 4

AOBJL I 2 1 FLG53 2

AOVERB I 2 1 PROUT2 2

APi 1 2 1 FLGS4 2

AP1BK I 2 1 PRVIS 2

AP1NE I 2 1 PRFONM 2 164

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
---- - - --- -- ---- -- --- for FRAME3

APIP I 2 1 FLGS4 2 (Sheet 2 of 32)
AP1P2V I 2 1 PRFONM 2
APB I 2 256 PRAPL 512
APBG I 2 1 PREDGA 2
APT I 2 256 PRAPL 512

AREAO R 4 2 PROUTI 8
ARMAX R 4 1 PRAREA 4
ATEMP R 4 1 TSEA 4
ATT R 4 3 FRM1 12
AZIM R 4 1 FRM1 4
B 1 2 i DECODE 2
B 1 4 1PRFMOD 4
B 1 4 1TSBNST 4
B 1 4 1 TSBSNO 4
B 1 4 1TSEMOV 4
BB 1 2 3 PRLD 6
BBFO I 2 1 PRFONM 2
BBM 1 2 18 PRESM 36
BBTM I 2 1 PRFMOD 2
BCK I 2 1 PROUT2 2

BCKOFF R 4 1 PARSEL 4
BCOL I 4 6 RAMCOM 24
BGCNT I 2 1 PRCTRL 2
BGNDFL I 2 1 PROUTI 2
BGNDSL I 2 1 PROUTI 2
BGRTFL I 2 1 MODOUT 2
BIGNO R 4 1 PRAREA 4
BKGB I 2 1 PREDGA 2
BKGC3 I 2 1 VPMLF 2
BKGC3 I 2 1 VPSIMP 2
BKGL I 2 1 PREDGE 2
BKGLTP I 2 8 PRTPL 16
BKGR I 2 1 PREDGE 2
BKGRTP I 2 8 PRTPL 16
BKGT I 2 1 PREDGA 2
BL 1 2 4 PRLD 8
BLIM R 4 90 PRVP 360
BLM I 2 18 PRESM 36
BLNFLG L 4 1 OPTNS 4
BLOCK C 1 1 WORK4 1
BM 1 2 1 PRFBKU 2
BM 1 4 1 PRFMOD 4
BNX I 2 1 PROUTi 2
BNX 1 2 3 TSPD1 6
BNXN I 2 1 TSPD1N 2
BNXP I 2 1 TSPD1 2
BP1BK I 2 1 PRVIS 2
BR 1 2 4 PRLD 8
BRM I 2 18 PRESM 36
BT 1 2 3 PRLD 6
BTFO 1 2 1 PRFONM 2
BTM I 2 18 PRESM 36
BTOP I 2 1 PRFMOD 2 165

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

BUFF 1 4 320 BFRI 1280 (Sheet 3 of 32)
BUFF I 4 320 BFRM 1280
BUFF I 4 320 BFRO 1280
C1 1 2 3 VPCFC 6
C2 R 4 6 TSPD2 24
C2 1 2 3 VPCFC 6
C2N R 4 3 TSPD2N 12
C3 R 4 6 TSPD2 24

C3 1 2 3 VPCFC 6
C3N R 4 3 TSPD2N 12
C5 R 4 2 TSPD2 8
CSN R 4 1 TSPD2N 4

C6 R 4 2 TSPD2 8

C6N R 4 1 TSPD2N 4

CA 1 2 270 PRVP 540
CASE 1 2 5 LR2 10

CASE I 2 18 TB2 36
CASELE I 2 15 SINGS 30
CASENO I 2 8 SINGS 16
CB I 2 270 PRVP 540

CBKG I 2 3 VPCFC 6
CC I 2 270 PRVP 540

CDN R 4 1 TSPD1N 4

CDSP1 R 4 4 TSDBN 16
CDSUM R 4 4 TSINC 16

CE I 2 3 VIDPRO 6
CE 1 2 3 VPSIMP 6
CFBB 1 4 1 FBTB 4
CFBT 1 4 1 FBTB 4
CHAN I 2 1 TSPD1 2
CHANN I 2 1 TSPD1N 2

CHAZ I 2 3 VPCFC 6
CHNSTA I 2 1 PRFBKD 2
CL 1 2 3 VIDPRO 6

CLLI R 4 1 VPLLI 4

CLRCH2 I 2 8 RAMSET 16
CLRCH4 I 4 4 RAMSET 16

CLT I 2 120 PLGVP 240
CLUCEN R 4 192 WORK4 768
CLUMAP I 2 18 WORK4 36
CNN R 4 3 TSPD1N 12
CNSOLE 1 4 1 RAMOUT 4

CNSOLE I 4 1 RAMSET 4

CNSP1 R 4 12 TSDBN 48
CNSUM R 4 12 TSINC 48

CO I 2 90 PRVP 180
COL I 4 200 GEN 800

COLFLG I 2 1 ARIN 2
COLOR2 I 2 260 RAMSET 520

COLOR3 I 2 1 ARIN 2

COLOR4 I 4 130 RAMSET 520

COM R 8 1 INIT3 8
CORCX I 4 1 WORK4 4 166

SYMBOL T 3 DIMN# LOCATI TOTAL# Table C-4: Variable List
---- - - --- -- ---- -- --- for FRAME3

CORCY 1 4 3. WORK4 4 (Sheet 4 of 32)
CORCZ 1 4 1 WORK4 4
CORLAT 1 4 3. WORK4 4
CORLON 1 4 1 WORK4 4

CS 1 2 90 PRVP 180
CSI 1 2 1 WORK4 2
CTLWD 1 4 1 WORKIl 4
CTLWRD 1 4 20 WORK15 80

CUMMUL 1 2 1 WORK4 2
CURMAP 1 4 40 WORIC6 160
CV R 4 1FRMI 4
Cw R 4 1 FRMl 4
D.AA 1 4 1 CXMAP 4

D.AA 1 4 1 DECODE 4

D.AA 1 4 1 EDGGEN 4
D.AA I 4 1 FRAME3 4
D.AA 1 4 1 MODSET 4

D.AA 1 4 1 ORDER 4

D.AA 1 4 1 OVERID 4
D.AA 1 4 1 PRAUPD 4
D.AA 1 4 1 PRCLR 4
D.AA 1 4 1 PRELOD 4
D.AA I 4 1 PRINIT 4
D.AA 1 4 1 PRTPLU 4
D.AA 1 4 1 PTLSIT 4

D.AA 1 4 1iPUT 4

D.AA 1 4 1 RAMOUT 4
D.AA 1 4 1 RAMSET 4
D.AA 1 4 1 STPED 4
D.AA 1 4 1 STPLT 4
D.AA 1 4 1 TSDBN 4
D.AA 1 4 1 TSEA 4
D.AA 1 4 1 TSEDA 4
D.AA 1 4 1 TSEDGR 4
D.AA 1 4 1 TSEMOV 4

D.AA 1 4 1 TSINIT 4
D.AA 1 4 1 TSLODS 4
D.AA 1 4 1 TSMUX 4
D.AA 1 4 1 TSPINC 4
D.AA 1 4 1 TSSHAD 4
D.AA 1 4 1 TSTXMD 4
D.AA 1 4 1 VPAINC 4
D.AA 1 4 1 VPCFC 4
D.AA 1 4 1 VPFADE 4
D.AA 1 4 1 VPLTC 4
D.AA 1 4 1 VPMLF 4
D.AB 1 4 1 CXMAP 4

D.AB 1 4 1 ORDER 4
D.AB 1 4 1 PRAUPD 4

D.AB 1 4 1 PRELOD 4
D.AB 1 4 1 PRINIT 4
D.AB 1 4 1 PRTPLU 4
D.AB 1 4 1 TSDBN 4167

SYMBOL T 5 DIMN# LOCATI TOTAL# Table C-4: Variable List

for FRAME3

D.AB I 4 1 TSEDA- 4(Set5o32
D.AB I 4 1 TSEDGR 4(Set5o)

D.AB 1 4 1 TSEMOV 4

D.AB I 4 1 TSINIT 4

D.AB I 4 1 TSLODS 4

D.AB I 4 1 TSMIJX 4

D.AB I 4 1 TSPINC 4

D.AB I 4 1 TSSHAD 4

D.AB I 4 1 TSTXMD 4

D.AB I 4 1 VPAINC 4

D.AB 1 4 1 VPLTC 4

D.AB I 4 1 VPIILF 4

D.AC I 4 1 VPAINC 4

D.BA I 4 1 CXMAP 4

D.BA I 4 1 ORDER 4

D.BA I 4 1 STPED 4

D.BA I 4 1 TSBSNO 4

D.BA I 4 1 TSINIT 4

D.BA I 4 1 TSLODS 4

D.BA I 4 1 TSMUX 4

D.BA 1 4 1 TSPINC 4

D.BA I 4 1 TSSHAD 4

D.BA I 4 1 TSTXMD 4

D.BA I 4 1 VIDPRO 4

D.BA 1 4 1 VPSIMP 4

D.BB I 4 1 ORDER 4

D.BB I 4 1 STPED 4

D.BB 1 4 1 TSMUX 4

D.BB I 4 1 TSPINC 4

D.BB I 4 1 VPSIMP 4

D.CA I 4 1 TSII4IT 4

DA R 4 1 PRAUJPD 4

DA R 4 1 TSVPFD 4

DADJ R 4 4 PRLD 16

DADJA R 4 90 PRVP 360

DADJB R 4 90 PRVP 360

DADJE R 4 1 PREDGA 4

DADJM R 4 18 PRESM 72

DADJO R 4 2 PROUTI 8

DB R 4 1 TSVPFD 4

DDA R 4 1 TSVPFD 4

DDB R 4 1 TSVPFD 4

DELI R 4 1 EDGGEN 4

DELTI R 4 1 PATPRO 4

DELTJ R 4 1 PATPRO 4

DEVICE 1 2 1 RAMSET 2

DF343 R 4 1 TSVPFD 4

DHDR 1 4 1 FRM3 4

DI R 4 1 TSEDA 4

DIDJ R 4 1 TSEA 4

DIL .14 1 TSEDA 4

DIR R 4 1 TSEDA 4

DJ R 4 1 TSEDA 4168

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List

DJ1 R 4 1 TSEA 4 for FRAME3
DJ2 R 4 1 TSEA 4 (Sheet 6 of 32)
DJBOT R 4 1 TSEDA 4
DJMAX R 4 1 TSEA 4
DJMIN R 4 1 TSEA 4
DJN R 4 1 TSBSNO 4

DJTOP R 4 1 TSEDA 4
DOUT R 4 1 TSLOD 4

DP R 4 12 TSLODV 48

DP1 R 4 1 TSLODS 4

DP2 R 4 1 TSLODS 4

DPJ R 4 6 TSBND 24

DPJMI R 4 6 TSBND 24

DPJP1 R 4 6 TSBND 24

DPJX R 4 1 TSDBN 4
DPL R 4 3 TSBND 12

DPLMI R 4 3 TSBND 12

DPLP1 R 4 3 TSBND 12

DPMAX R 4 1 TSLODS 4

DPSUM R 4 2 TSOUT 8

DRA R 4 1 VPFADE 4

DRB R 4 1 VPFADE 4
EC 1 2 12 DECODE 24

ECASE 1 2 3 TSBNSF 6

ECWL 1 4 1 CXMAP 4

ECWL I 4 1 STPED 4

ECWL 1 4 1 STPLT 4
EDC-ENO 1 4 1 NSEDGE 4

EDGENO 1 4 1 PREDGR 4

EDGENO 1 4 1 PROUT 4

EDGFLG L 4 1 OPTNS 4

EDW R 8 1 INIT3 8

EEA 1 2 1 PRFMOD 2
EEB 1 2 1 PRFMOD 2
EEM 1 2 18 PRESM 36

EGF 1 4 1 TSTXMD 4
EHDR 1 4 1 STPED 4

EJ 1 2 4 PRLD 8
EJE 1 2 1 PREDGA 2
EJL R 4 1 PREDGE 4

EJLEFT 1 2 1 NSEDGE 2
EJM 1 2 1.8 PRESM 36
EJR R 4 1 PREDGE 4
EJRTP R 4 8 PRTPL 32
ELEV R 4 1 FRM1 4
ENVBL.K 1 2 1 WORK4 2
EOF 1 4 1 REED 4
EPRA 1 2 1 PREDGA 2
EPRAB 1 2 1 PREDGA 2
EPRAT 1 2 1 PREDGA 2
ERRMSG 1 4 1 MISC 4
ESIIB I 2 8 PRESMI 16
F1RFLG L 4 1 OPTNS 4 169

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
--- for FRAME3

FA I 2 . PRLD 2 (Sheet 7 of 32)
FA3 R 4 1 PRFBKM 4

FACE I 2 1 COLOR 2
FACE I 2 1 TSPD1 2

FACEDP Z ? 128 WORK4 256
FACEL I 4 256 NSTABL 1024
FACELF I 2 1 NSEDGE 2

FACEN I 2 1 TSPD1IN 2

FACER I 4 256 NSTABL 1024
FACERT I 2 1 NSEDGE 2

FACESP R 4 2 NSEDGE 8

FACEV I 2 600 WORK4 1200

FACEXT I 2 600 WORK4 1200

FACLUS I 2 128 WORK4 256

FACNCL I 2 128 WORK4 256
FACNED I 2 128 WORK4 256

FACOLR I 2 128 WORK4 256

FACTEX I 2 128 WORK4 256
FADFLG L 4 1 OPTNS 4

FANUM I 2 1 WORK11 2

FB I 2 270 PRVP 540

FBITS I 2 1 WORKI 2

FBKENB I 2 1 PRFBKD 2

F8KENT I 2 1 PRFBKD 2

FBKWBT I 2 1 PRFBKD 2
FBKWTP I 2 1 PRFBKD 2

FBLEN 1 2 1 WORKII 2

FBLEND I 2 128 WORK4 256
FBSUN I 2 1 COLOR 2

FBTM I 4 1 PRFMOD 4

FCENX R 4 1 WORK11 4
FCENY R 4 1 WORKI 4
FCENZ R 4 1 WORK11 4
FCLUST I 2 1 WORK11 2

FCOEF R 4 3 VPFADE 12

FCOLR I 2 1 WORKi 2

FDSLCT I 2 3 PROUTI 6
FE 1 2 1TSEDGF 2

FEAT I 2 1 COLOR 2
FEATN I 2 1 WORK1l 2
FEDGPT 1 2 1 WORKI 2

FEFLG I 2 1 PREDGA 2

FELE I 2 1 TSBNSF 2

FEM I 2 18 PRESM 36
FEME I 2 1 TSBNSF 2
FFA R 4 1 VPFADE 4

FFB R 4 1 VPFADE 4

FHEIGH R 4 1 WORK11 4
FIB R 4 256 PRFBKM 1024

FIBFO R 4 1 PRFONM 4
FIL R 4 1 ARECAL 4

FIL R 4 4 PRLD 16
FIL R 4 1 PTLSIT 4 170

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List

FILE R 4 1 PREDGE 4 for FRAME3

FILFIR R 4 1 ARIN 4 (Sheet 8 of 32)

FILM R 4 18 PRESM 72

FILP R 4 1 ARECAL 4

FILSZ R 4 1 ARECAL 4

FIR R 4 4 PRLD 16

FIRE R 4 1 PREDGE 4

FIRM R 4 18 PRESM 72

FIT R 4 256 PRFBKM 1024

FITFO R 4 2 PRFONM 4

FJL R 4 1 ARECAL 4

FJL R 4 1 PRAREA 4

FJLP R 4 1 ARECAL 4

FJLPZ R 4 2 LOCAL 8

FJN R 4 1 PRAUPD 4

FJR R 4 1 PRAREA 4

FL I 4 4 PRLD 16

FLE I 2 1 TSEDGF 2

FLEX I 2 1 TSBNSF 2

FLM I 4 18 PRESM 72

FLONGX R 4 1 WORK11 4

FLONGY R 4 1 WORKI 4

FLONGZ R 4 1 WORK11 4

FMC R 4 3 VPCFC 12

FNEDGE I 2 1 WORK11 2

FNORMX R 4 1 WORK1l 4

FNORMY R 4 1 WORKIl .4

FNORMZ R 4 1 W'IK11 4

FNXTCL I 2 1 WORK11 2

FOPG R 4 1 VPFM 4

FOPS R 4 1 VPFM 4

FORI R 4 1 EDGGEN 4

FORI R 4 1 EDGORD 4

FORI R 4 1 INIT3 4

FORI R 4 1 NSRSLV 4

FORI R 4 1 PARSEL 4

FORI R 4 1 PATPRO 4

FORI R 4 1 PRINIT 4

FORI R 4 1 TSEA 4

FORI R 4 1 WNDDMP 4

FORI R 4 1 TSBSNO 4

FORI R 4 1 TSDBN 4

FORI R 4 1 TSEMOV 4

FORIl R 4 1 TSESP 4

FORII R 4 1 TSLODS 4

FORIIX R 4 1 TSEMOV 4

FORIiX R 4 1 TSESP 4

FORI2 R 4 1 TSBSNO 4

FORI2 R 4 1 TSDBN 4

FORI2 R 4 1 TSLODS 4

FORI2X R 4 1 TSEMOV 4

FORI2X R 4 1 TSESP 4

FORIE R 4 1 PATPRO 4 171

SYMBOL T 5 DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

FORIG R 4 1 PATPRO 4 (Sheet 9 of 32)
FORII R 4 1 PRELOD 4

FORIP R 4 1 TSESP 4
FORIS R 4 1 TSESP 4

FORIT R 4 1 NSRSLV 4

FORJ R 4 1 INIT3 4
FORJ R 4 1 NSRSLV 4
FORJ R 4 1 TSSHAD 4

FORJ R 4 1 VPSIMP 4

FORJJ R 4 1 TSINIT 4

FORK R 4 1 EDGORD 4

FORK R 4 1 NSRSLV 4

FORK R 4 1 TSEDA 4

FORK R 4 1 VIDPRO 4

FORK R 4 1 VPSIMP 4

FORK R 4 1 VPTEX 4

FORK R 4 1 WNDDMP 4
FORKK R 4 1. TSINIT 4
FORLL R 4 1 TSINIT 4
FORN R 4 1 WNDDMP 4

FOUND L 4 1 COLOR 4
FP I 2 12 DECODE 24
FPRIO I 2 1 WORKI 2

FR 1 4 4 PRLD 16

FRAD P 4 1 WORK11 4

FRB I 4 3 PRLD 12

FRBM I 4 18 PRESM 72
FRFOB I 2 1 PRFONM 2
FRFOT I 2 1 PRFONM 2

FRM 1 4 18 PRESM 72
FRT I 4 3 PRLD 12

FRTM 1 4 18 PRESM 72
FSHORT R 4 1 WORK11 4

FSURF R 4 1 VPFADE 4
FSZ R 4 1 ARECAL 4

FSZ R 4 1 PTLSIT 4
FTOP I 4 1 PRFMOD 4

FVISED 1 4 1 PRCTRL 4
FVORD I 2 128 WORK A 256
FVPG R 4 1 VPFM 4
FVPS R 4 1 VPFM 4

FWPG R 4 1VPFM 4
FWPS R 4 1 VPFM 4

GCOL I 4 6 RAMCOM 24
GND 1 2 3 VPFM 6

HALFNA I 2 92 NSOUT 184
HALFNA I 2 94 PROUT 188
HAZCOR R 4 1 VPCFC 4

HAZG 1 2 3 VPFM 6

HAZS 1 2 3 VPFM 6
HBB I 2 1 PRFONM 2
HBT I 2 1 PRFONM 2

HDRSW I 2 1 NSEDGE 2 172

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

HEF I 2 3 TSPDI 6 (Sheet 10 of 32)
HEFN I 2 1 TSPD1N 2

HFIB R 4 1 PRFONM 4

HFIT R 4 1 PRFONM 4

HFLE I 2 1 TSEDGF 2

HFLEX I 2 1 TSBNSF 2

HFOV R 4 1 FRM1 4

HFRFOB I 2 1 PRFONM 2

HFRFOT I 2 1 PRFONM 2

HHDR I 2 1800 WNDDMP 3600

HICLUS C 1 1 WORK4 1

HMLFOB I 2 1 PRFONM 2

HMLFOT I 2 1 PRFONM 2

HMPFOB I 2 1 PRFONM 2

HMPFOT I 2 1 PRFONM 2

HMRFOB I 2 1 PRFONM 2

HMRFOT I 2 1 PRFONM 2

HNA I 2 92 VPAINC 184

HOSFOB I 2 1 PRFONM 2

HOSFOT I 2 1 PRFONM 2

HRZFLG I 4 1 PROUT 4

HTSFOB I 2 1 PRFONM 2

HTSFOT I 2 1 PRFONM 2

HUB I 2 1 PRFONM 2

HUT I 2 1 PRFONM 2

I 1 2 1 COLOR 2

I 1 4 1CXMAP 4

I 14 I DECODE 4

I 14 1EDGGEN 4

I I4 1 EDGORD 4

I 14 1 INIT3 4

I 14 1 MODSET 4

I 14 1 MODULA 4
I 14 I NSOUT 4

I 14 1NSRSLV 4

I 14 1 ORDER 4

I 1 4 i PARSEL 4

I 1 4 1 PATPRO 4

I 14 1PRCLR 4
I 14 1 PRDMP 4
I 1 4 I PRINIT 4
I I4 1 PRIRSV 4

I 14 i PROUT 4
I 1 4 1 PTLGEN 4

I 1 4 1 PTLSIT 4
I 1 4 I PUT 4
I 1 4 RAMOUT 4
S 1 4 1 RAMSET 4

I 14 i REED 4

I 1 4 1 STPED 4

I 14 1STPLT 4

I I4 1 TSEA 4

I I 4 1 TSEDGR 4 175

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

I I 4 1 VPLLI 4 (Sheet 11 of 32)
I 1 4 1 VPPTR 4

I 1 4 1 VPSIMP 4

I 1 4 1 WNDDMP 4

10 1 4 1 FRMI 4

10 1 4 1VPLLI 4

Il I 4 1 ARIN 4

II I 4 1 NSRSLV 4

Ii I 4 1 TSBSNO 4

11 I 4 1 TSDBN 4

I1 I 4 1 TSEMOV 4

Ii I 4 1 TSESP 4

Ii I 4 1 TSLODS 4

Ii I 4 1 TSPINC 4

112 I 4 1 PROUT 4

IiX I 4 1 TSEMCJV 4

IiX I 4 1 TSESP 4

12 1 4 1 NSRSLV 4

12 1 4 1 TSBSNO 4

12 1 4 1 TSDBN 4

12 1 4 1 TSEMOV 4

12 1 4 1TSESP 4

12 1 4 1 TSLODS 4

12 I 4 1 TSPINC 4

12X I 4 1 TSEMOV 4

12X 1 4 1 TSESP 4

13 1 4 1 TSPINC 4

IABSAD I 4 1 MODSET 4

IABSAD I 4 1 SETRD 4

IAC I 4 1 PRESEL 4

IALL I 4 1 PRTPLU 4

IALR I 4 1 PRTPLU 4

IAOB I 2 90 PRVP 180

IAOBI I 4 1 VPMLF 4

IAP I 4 1 PRAPLU 4

IAPi I 4 1 PREDGA 4

IAP2 I 4 1 PREDGA 4

IAPB I 4 1 PREDGA 4
IAPB1 I 4 1 PREDGA 4
IAPB2 I 4 1 PREDGA 4
IAPC I 4 1 PREDGA 4
IAPT I 4 1 PREDGA 4

IAPTI I 4 1 PREDGA 4
IAPT2 I 4 1 PREDGA 4

IARG I 4 1 MODSET 4

IARG 1 4 1 PUT 4
IARG 1 4 1 REED 4
IARG I 4 1 SETFIL 4
IARG I 4 1 SETRD 4
IARL I 4 1 PRTPLU 4

IARR I 4 1 PRTPLU 4

IB I 4 30 CXMAP 120
IB R 4 1 EDGGEN 4 174

SYMBOL T 3 DIMN# LOCATI TOTAL# Table C-4: Variable List
IB 1 4 PLD 8for FRAME3

IB 1 2 40 SPLD 82 (Sheet 12 of 32)

IB 1 4 1 STPLT 4

IBA 1 2 1 PREDGA 2

IBC 1 4 1 PRESEL 4

IBF I 4 1 ARECAL 4

IBF 1 4 1. EDGGEN 4

IBKG I 4 1 VPILN 4

IBL I 4 1 TSPINC 4

IBLU I 2 3 PROUT1 6

IBM I 2 18 PRESM 36

IBMF 1 4 1 NSEDGR 4

IBOTH 1 4 1 DECODE 4

IBR I 4 1 TSPINC 4

IBTM 1 2 1 PREDGA 2

IBTMTP I 2 8 PRTPL 16

IBX 1 4 1 TSBNST 4

IC I 2 1 ARIN 2

IC 1 4 1 TSBSNO 4

Ic 1 4 1 TSDBN 4

ICA3 I 4 1 TSPINC 4

!CASE I 2 1 ARIN 2

ICHAN 1 4 1 OPTNS 4
ICLOS I 4 1 CXIIAP 4

ICLOS 1 4 1 EDGGEN 4

ICLOS I 4 1 INIT3 4

ICLOS I 4 1 PRIRSV 4

ICLOS 1 4 1 PTLGEN 4

ICLOS I 4 1 PTLSIT 4

ICLOS 1 4 1 STPED 4

ICLOS I 4 1 STPLT 4

ICLOS I 4 1 VIDPRO 4

ICLRIX I 4 1 PRTPLU 4

ICNT 1 4 1 FRAME3 4

ICNT 1 4 1 NSRSLV 4

ICNTR I 4 1 EDGGEN 4

ICNTR I 4 1 PTLGEN 4

ICOSYS I 4 1 MISC 4

ICURR 1 2 1 TSCTRL 2

IDADJO 1 2 1 ARIN 2

IDEF 1 2 1lARIN 2

IDEV 1 4 1 DEV 4

IE 1 4 1 PATPRO 4

IED 1 4 1 FRM3 4

IEF 1 4 1 MISC 4

IEFLG I 4 100 STRIP 400

IEHDR I 4 400 STRIP 1.600

IELAP I 4 1 FRAME3 4

IELSE I 2 1 DECODE 2

IEPRI I 4 1 PREDGA 4

IEG I 4 1 PRTPLU 4

IESMA I 4 8 PRESMI 32
IESMB I 4 8 PRESMI 32 175

5Y!'BOL T 5 DIMN# LOCATI TOTAL# Table C-4: Variable List
---- - - --- -- ---- -- --- for FRAME3

IFACE 1 4 1 ARIN 4 (Sheet 13 of 32)
IFACE2 I 4 1 ARIN 4

IFACEL 1 4 1 PREDGE 4

IFACER 1 4 1 PREDGE 4

IFACL 1 4 200 GEN 800

IFACR 1 4 200 GEN 800

IFACX 1 4 1 EDGORD 4

IFBJCB I 4 1 PRFBKD 4
IFBKT I 4 1 PRFBKD 4

IFD I 4 1 PREDGA 4
IFLG 1 2 1 EDGGEN 2

IFLG I 2 1 FRAME3 2

IFLG 1 2 1 INIT3 2

IFLG I 4 1 PRIRSV 4

IFLG I 2 1 PTLSIT 2

IFLG I 4 1 STPED 4

IFLG I 2 1 STPLT 2

IFLG I 2 1 WNDDMP 2

IFLS I 4 1 NSRSLV 4

IFOB 1 4 1 PRFQNM 4

IFOT 1 4 1 PRFONM 4

IFPRI 1 2 4096 FACPR 8192

IFRBTM I 4 256 PRFBKM 1024

IFRS I 4 1 NSRSLV 4

IFRTOP I 4 256 PRFBKM 1024

IFS I 4 1 VPFADE 4

IFXLOD I 4 1 OPTNS 4

IGRN I 2 3 PROUTi 6

IHDT 1 4 1 FRM3 4

IHORIZ I 2 1 VPFDC 2

IHP1 I 4 1 PREDGA 4

IHP2 I 4 1 PREDGA 4

IHP3 I 4 1 PREDGA 4

IHRZ 1 4 1 NSEDGR 4

II 1 4 1 ARIN 4

II I 4 1 PRELOD 4

II I 4 1 TSEDA 4

II I 4 1 TSEMOV 4

Ii I 4 1 TSINIT 4

11 I 4 1 TSTXMD 4

IJ 1 4 1 TSTXMD 4

IJ 1 4 1 WNDDMP 4
IJLE 1 4 1 PREDGA 4

IJLM I 4 18 PRESM 72

IJRE I 4 1 PREDGA 4
IK 1 4 1 TSESP 4

IL 14 1 CXMAP 4

IL R 4 100 STRIP 400

IL 1 2 1 TSCTRL 2

ILE 1 4 1 PRFBKU 4
ILEFT I 4 1 TSTXMD 4
ILFAC 1 4 1 EDGGEN 4
ILNE I 2 2 TSBNSF 4 176

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME5

ILOC I 4 1 NSRSLV 4 (Sheet 14 of 32)

ILOD 1 4 1 TSTXMD 4

ILODI 1 4 1 TSTXMD 4

ILT 1 4 1FRM3 4

IMD I 4 1 PREDGA 4

IMIN I 4 1 FRAME3 4

IMOD 1 2 1 ARIN 2

IN 1 4 1 AREA2 4

IN 1 4 i SINGS 4

IN4 I 4 1 EDGGEN 4

INB 1 4 1ARIN 4

INC 1 4 1 STPED 4

INC 1 4 1 STPLT 4

INC 1 2 2 TSBNSF 4

INDEX 1 4 1LR2 4

INDEX I 4 1 SINGS 4

INDEX 1 4 1TB2 4

INDXE I 4 1 VPPTR 4

INDXL I 4 1 VPPTR 4

INEW 1 4 1 PRESMI 4

INIBF2 I 2 4 RAMSET 8

INIBF4 I 4 2 RAMSET 8

INITFR I 4 1 PRCTRL 4

INKI 1 4 1 TSTXMD 4

INK2 I 4 1 TSTXMD 4

INT I 4 1 ARECAL 4

INT I 4 1 PRESEL 4

INT I 4 1 PRIRSV 4

INT I 4 1 PRTPLU 4

INT I 4 1 PTLSIT 4

INT 1 4 1TSEA 4

10 1 4 1ARIN 4

IOBJ 1 4 1 ARIN 4

IP 1 4 I DECODE 4

IP 1 4 1TSESP 4

IP 1 4 1 TSTXMD 4

IPi 1 4 1 TSEDA 4

IPlA I 4 1 PRESMI 4

IPIB 1 4 1 PRESMI 4

IP2 1 4 1 TSEDA 4

IP2A I 4 1 PRESMI 4

IP2B I 4 1 PRESMI 4

IP3 1 4 1 TSEDA 4

IP4 1 4 1 TSEDA 4

IPATH I 4 1 TSMUX 4

IPES I 4 2 TSEDGF 8

IPFLG I 4 1 PRCTRL 4

IPLGER I 4 1 PREPD 4

IPLQL I 4 1 PRTPLU 4

IPLQR I 4 1 PRTPLU 4
IPPi I 4 1 TSTXMD 4

IPR I 4 4 PRESMI 16

IPRB1 I 4 1 PREDGA 4 177

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME5

IPRB2 I 4 1 PREDGA 4 (Sheet 15 of 32)
IPRCNT I 2 1 TSCTRL 2
IPRE I 4 1 TSTXMD 4

IPRIL I 4 1 PREDGE 4
IPRIR I 4 1 PREDGE 4
IPROC I 4 1 MODSET 4
IPROC 1 4 1 PUT 4
IPROC I 4 1 REED 4
IPROC I 4 1 SETRD 4
IPRQL I 4 1 PRTPLU 4
IPRQR I 4 1 PRTPLU 4
IPRS I 4 1 NSRSLV 4
IPRT1 I 4 1 PREDGA 4
IPRT2 I 4 1 PREDGA 4
IPUPlA I 4 1 PROUT 4
IPUPA I 4 1 PREDGA 4
IR 1 4 1CXMAP 4
IR R 4 100 STRIP 400
IR 1 2 1 TSCTRL 2
IR 1 4 1 TSEA 4
IRAE I 4 1 PREDGA 4
IRAP3S I 4 1 PRP3S 4
IRATP1 I 4 1 PREDGA 4
IRATP2 I 4 1 PREDGA 4

IREC I 4 5 BFRI 20
IREC I 4 5 BFRM 20
IREC I 4 5 BFRO 20
IRED I 2 3 PROUTI 6
IRET 1 4 1 LR2 4
IRFAC I 4 1 EDGGEN 4

IRFC I 4 1 MODSET 4
IRFC 1 4 1 PUT 4
IRFC 1 4 1 REED 4
IRFC I 4 1 SETRD 4
IRSW I 4 1 TSTXMD 4
IRX I 4 1 MODSET 4
IRX 1 4 1 SETRD 4
IS 1 4 1 TSESP 4

ISCI I 4 1 DECODE 4
ISC2 I 4 1 DECODE 4
ISEC I 4 1 FRAME3 4
ISET I 4 1 OVERID 4
ISET I 4 1 VPCFC 4
ISETI 1 4 1 TB2 4
ISET2 1 4 1 TB2 4
ISET3 1 4 1 TB2 4
ISHVUP I 4 1 PRDMP 4
ISTAT I 4 1 MODSET 4
ISTAT I 4 1 PATPRO 4
ISTAT 1 4 1 PUT 4

ISTAT I 4 1 RAMOUT 4
ISTAT I 4 1 RAMSET 4
ISTAT I 4 1 REED 4 178

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

ISTAT I 4 1 SETFIL 4 (Sheet 16 of 32)
ISTAT I 4 1 SETRD 4

ISTAT I 4 1 VPLTC 4

ISTIM I 4 3 FRAME3 12

ISWP I 4 1 ORDER 4

IT R 4 1 EDGGEN 4
IT 1 4 1 NSRSLV 4

IT 1 2 4 PRLD 8

ITA I 2 1 PREDGA 2

ITB I 4 1 ARECAL 4

ITC I 4 1 TSTXMD 4

ITEMP I 4 46 WNDDMP 184

ITEXC I 4 100 STRIP 400

ITF I 4 1 ARECAL 4

ITF I 4 1 EDGGEN 4

ITIM I 4 3 FRAME3 12

ITL I 4 1 TSPINC 4

ITM 1 4 8 FRM3 32

ITM I 2 18 PRESM 36

ITMP I 4 1 EDGORD 4

ITMP I 4 1 PRIRSV 4
ITOP i 2 1 PREDGA 2

ITOPTP I 2 8 PRTPL 16

ITORB I 2 1 PRTPLU 2

ITP1 I 4 1 PREDGA 4

ITP2 I 4 1 PREDGA 4

ITP3 I 4 1 PRTPLU 4

ITPF I 4 1 NSEDGR 4

ITPK I 4 1 PRTPLU 4

ITPRIL I 4 8 PRTPL 32

ITPRIR 1 4 8 PRTPL 32

ITR I 4 1 TSPINC
ITXS I 4 1 TSTXMD 4

IU 1 4 1 TSBSNO 4

IU 1 4 1TSDBN 4

IU 1 4 1 TSEMOV 4

IU 1 4 1TSLODS 4

IU 1 4 1 TSTXMD 4

IUl I 4 1 TSBSNO 4

IU1 1 4 1 TSEDA 4
IU1 I 4 1 TSLODS 4

IUP I 4 1 MODSET 4

IUP 1 4 i PUT 4

IUP 1 4 1 REED 4

Ivi I 2 1 DECODE 2

IV2 I 2 1 DECODE 2

IV3 I 2 1 DECODE 2

IWL I 4 1 NSEDGE 4

IX 1 4 5 BFRI 20
IX 1 4 5 BFRM 20

IX 1 4 5 BFRO 20

IXCOL I 4 1 FRM3 4

IXP I 4 1 TSTXMD 4 179

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
.........................-- for FRAME3

IXTM I 4 6 TXMAPS 24 (Sheet 17 of 32)
IXX 1 4 1STPLT 4

1 I4 1 CXMAP 4
1 14 i DECODE 4

S 14 1 EDGGEN 4
1 1 4 1 INIT3 4

J 1 4 i NSOUT 4

3 14 1 NSRSLV 4

1 14 1 ORDER 4

3 1 4 1 PRDMP 4

3 1 4 1PROUT 4

3 1 4 1 PTLGEN 4

J 1 4 1 PTLSIT 4

3 1 4 1 STPED 4

J 1 4 1 STPLT 4

3 1 4 1 TSEDGR 4

J 14 1TSMUX 4
1 I4 i TSSHAD 4
1 14 1 VPLLI 4
1 14 1 VPPTR 4

S 1 4 1VPSIMP 4

JO 1 4 1 FRM1 4

JO 1 4 1VPLLI 4

J1 I 4 1 MODSET 4

J1 I 4 1 PRDMP 4

J1 I 4 1 PUT 4

J1 1 4 i REED 4

J2 1 4 1PRDMP 4

J3 1 4 1PRDMP 4

JAE 1 4 1 VPPTR 4

JAL 1 4 1 VPPTR 4

JARG I 4 1 MODSET 4

JARG 1 4 1 PUT 4

JARG 1 4 1 REED 4

JARG I 4 1 SETRD 4

JCI R 4 1 EDGGEN 4

JC2 R 4 1 EDGGEN 4

JCURR I 2 1 TSCTRL 2

JDADJO I 2 1 ARIN 2

JE I 4 90 PRVP 360

JED I 4 1 PROUT2 4

JEFLG I 4 200 GEN 800

JEHDR I 4 800 GEN 3200

JEL 1 4 1JWIN 4

JEL I 4 1 TSBSNO 4
JER 1 4 1JWIN 4

JHDR I 4 900 WNDDMP 3600

JINDX I 2 512 LTORD 1024

JINIT I 4 1 VPTEX 4

3J 1 4 1 TSINIT 4

JL R 4 100 STRIP 400

JL 1 2 3 TSPD1 6

JLEFT I 4 256 NSTABL 1024 180

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

JLIM I 4 1 VIDPRO 4 (Sheet 18 of 32)
JLIT I 4 40 PLGVP 160
JLN I 2 1 TSPDIN 2
JLP R 4 1 EDGGEN 4
JLS 1 4 1 NSRSLV 4

JLS I 4 1 TSEMOV 4

JLS 1 4 300 WNDDMP 1200

JMAX 1 4 1TSEA 4

JMAX 1 4 1 TSEDGR 4
JMOD I 4 1 PATPRO 4
JMPl 1 4 1 TSEA 4
JN 1 4 1PRLD 4

JN 1 2 2 TSINC 4

JND 1 4 1 TSDBN 4

JNEXT I 2 1 TSCTRL 2

JNMI I 2 2 TSINC 4

JPR 1 2 2 TSINC 4

JPREV I 2 1 TSCTRL 2

JPROC I 4 1 MODSET 4

JR R 4 100 STRIP 400
JR 1 2 3 TSPD1 6

JRCYC 1 4 1 TSCTRL 4
JRCYCS 1 4 1 VPTEX 4

JREC 1 4 1 MODSET 4

JREC 1 4 i REED 4

JRFC 1 4 1 MODSET 4
JRN I 2 1 TSPDIN 2

JRP R 4 1 EDGGEN 4

JSAV I 4 1 VPTEX 4
JSSW I 4 1 MISC 4

JSTR I 4 1 TSCTRL 4

JTEXC I 4 200 GEN 800

JX 1 4 1 MODSET 4
Jx 1 4 i PUT 4
JX 1 4 i REED 4

K 1 4 .1 CXMAP 4

K 1 4 i DECODE 4
K 1 4 1 EDGGEN 4

K 1 4 1EDGORD 4

K 1 4 1MODSET 4

K 1 4 1 NSRSLV 4

K 1 4 1 ORDER 4
K 1 4 1PRAPLU 4

K 1 4 1 PRAUPD 4

K 1 4 1PRDMP 4

K 1 4 I PRELOD 4
K 1 4 1 PRTPLU 4

K 1 4 1 PTLGEN 4
K 1 4 1PTLSIT 4

K 1 4 i PUT 4

K 1 4 i REED 4
K 1 4 1 TSDBN 4

K I 4 1 TSEDA 4 181

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

K I 4 1 TSEDGR 4 (Sheet 19 of 32)
K 1 4 1 TSESP 4
K 1 4 1TSMUX 4
K 1 4 1 TSSHAD 4
K 1 4 1TSTXMD 4

K I 4 1 VIDPRO 4
K 1 4 1 VPAINC 4
K 1 4 1 VPCFC 4
K 1 4 1 VPFADE 4

K 1 4 1 VP!TC 4
K 1 4 1VPMLF 4
K 1 4 1 VPSIMP 4
K 1 4 1 WNDDMP 4

Ki I 4 1 SAVELT 4
KI 1 4 1 VIDPRO 4
K1 1 4 1 VPLTC 4
K2 1 4 i SAVELT 4
K2 1 4 1VPLTC 4
K3 1 4 i SAVELT 4

K3 1 4 1 VPLTC 4
KARG I 4 1 MODSET 4
KARG 1 4 1 PUT 4
KB 1 4 1 DEVCOM 4

KE 1 4 1 EDGORD 4
KEDG 1 4 i GEN 4

KEDGM I 4 1 EDGGEN 4
KEG I 4 1 WNDDMP 4

KGND R 4 1 VPFM 4
KI R 4 1 FRM1 4

KIJ R 4 4 FIXDT 16
KINDX I 2 512 EDORD 1024
KJ R 4 1 FRMI 4

KJ 1 4 1VPMLF 4
KJ 1 4 1 VPSIMP 4
KK 1 4 1 TSINIT 4

KLFAC I 4 400 GEN 1600
KLHDR I 4 1600 GEN 64'r

KLIM I 4 1 EDGGEN 4
KLIM I 4 1 EDGORD 4
KLIT 1 4 i GEN 4
KLOD 1 4 1 FIXDT 4
KLTAB R 4 16 FIXDT 64
KNT 1 4 1 STPED 4
KNT 1 4 1 STPLT 4

KP 1 4 1 PRAUPD 4
KPX R 4 3 WORKil 12
KPY R 4 3 WORK11 12
KPZ R 4 3 WORKi 12
KRASH I 2 1 VPFM 2
KRFAC I 4 1 EDREL 4
KS R 4 1 FRM1 4
KSKY R 4 1 VPFM 4
KUVW R 4 6 FIXDT 24 182

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

L I 4 1 CXMAP 4 (Sheet 20 of 32)

L 1 2 iDECODE 2

L 1 4 1 NSRSLV 4

L 1 4 1 ORDER 4

L 1 4 1 PRDMP 4

L 1 4 1 PTLGEN 4

L 1 4 1 TSEDA 4

L 1 4 1 TSESP 4

L 1 4 1 TSTXMD 4

LO 1 4 1VPLLI 4

LO1O I 2 1 PREEFS 2

Li 1 4 1 TSESP 4

LIO01 I 2 1 PREEFS 2

L2 1 4 1 TSESP 4

L3 R 4 512 ORDER 2048

L3 1 4 1 TSESP 4

LADR I 4 1 Vr'LTC 4

LARG I 4 1 MOLSET 4

LAYREC I 2 1 WORK4 2

LCOL I 4 400 GEN 1600

LDA I 2 1 PREDGA 2

LDB I 2 1 PREDGA 2

LE 1 2 I TSEDGF 2
%E I 2 1584 WORK 3168

C I 1VPMLF 4

"--MP 1 2 1 FRM3 2

LEDG I 4 1 NSOUT 4

LEDG I 4 1 PATPRO 4

LEDG I 4 1 PROUT 4

LEFT I 4 1 MODSET 4

LEFT 1 4 I PUT 4

LEFT 1 4 1 REED 4

LEFT 1 4 1TB2 4

LEFT I 4 1 WNDDMP 4

LEND I 2 1 PRIRSV 2

LENE I 2 1 TSBNSF 2

LEOFS I 4 1 VIDPRO 4

LEOFS I 4 1 VPMLF 4

LEOFS I 4 1 VPSIMP 4

LET 1 2 1 VPMLF 2

LET I 2 1 VPSIMP 2

LETOT I 4 1 VPPTR 4

LFAC I 4 1 NSRSLV 4

LFACN I 4 50 PTLSET 200

LFDT 1 4 2 FRM3 a

LFREEZ I 2 1 WORK4 2

LHDR I 4 200 PTLSET 800

LI 1 4 1 VPLLI 4

LIM I 4 1 WNDDMP 4

LIMED I 4 1 VPAINC 4

LIMEDG I 4 1 STPED 4

LIMLIT I 4 1 STPLT 4

LIMLT I 4 1 VPLTC 4 183

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List

---------- -------------

LITC I 4 50 PTLSET 200 for FRAME3

LITLIM I 4 1 PTLGEN 4 (Sheet 21 of 32)

LITLUN I 4 2 PTLNAM 8

LITSZ R 4 50 PTLSET 200

LJ 1 4 1 VPLLI 4

LL I 4 1 TSINIT 4

LLDT 1 4 2 FRM3 8

LLFENB I 2 1 PRFBKD 2

LLFENT I 2 1 PRFBKD 2

LLFLG I 4 1 VPLLI 4

LLIM I 4 1 SAVELT 4

LLOC I 4 1 NSRSLV 4

LMEMI 1 4 1 LTC 4

LMEI1 I 4 1 VPAINC 4

LMIN I 4 1 VPLLI 4

LILMI I 4 1 VPLTC 4

LN 1 4 1MISC 4

LNA I 4 1 PTLSIT 4

LNB 1 4 1 FRM3 4

LNC I 4 1 EDGGEN 4

LNE 1 4 1FRM3 4

LNSP R 4 1 EDGGEN 4

LNST R 4 1 EDGGEN 4

LO 1 4 1 MISC 4

LOB 1 2 2 DCOUT 4

LOC I 4 1 NSRSLV 4

LOCFLG L 4 1 OPTNS 4

LOD I 4 12 TSLODV 48

LOD C 1 1 WORK4 I

LODF I 4 13 TSTXMD 52

LODMOD L 4 1 OPTNS 4

LODS I 4 1 TSPINC 4

LODT 1 4 16 TSLOD 64

LOWPRI I 4 1 PRTPLU 4

LP 1 4 1 DEVCOM 4

LPA I 2 90 PRVP 180

LPB I 2 90 PRVP 180

LPCT I 4 1 MODSET 4

LPCT 1 4 i PUT 4

LPCT 1 4 1 REED 4

LPL I 4 40 PLGVP 160

LPLT I 4 1 PTLGEN 4

LPN I 4 1 PTLGEN 4

LPRA I 4 1 PRTPLU 4

LRF 1 2 2 DCOUT 4

LSB I 4 1 TSTXMD 4

LSBM I 4 1 TSTXMD 4

LSBSM I 4 2 TSTXMD 8

LSBX I 4 3 TSTXMD 12

LSIZ I 4 40 PLGVP 160

LSP 1 4 1MISC 4

LST 1 4 1MISC 4

LSTLEN I 2 1 PREDGA 2 184

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

LSZP I 4 1 PTLSIT 4 (Sheet 22 of 32)

LTCMP I 2 1 FRM3 2
LTLIM I 4 1 PTLSIT 4
LTOT I 4 1 VPPTR 4
LTPR I 2 2 PROUT2 4

LUNE I 4 1 VPPTR 4
LUNED I 2 2 LUNEDG 4
LUNL I 4 1 VPPTR 4

LUTSE2 I 2 4 RAMSET 8
LUTSE4 I 4 2 RAMSET a
L2E 1 4 1 FRM3 4
L2L 1 4 1 FRM3 4

M 1 4 1 CXMAP 4
m 1 4 1 ORDER 4

M 1 4 1 PRDMP 4

M 1 4 I PUT 4

M 1 4 1STPED 4
m 1 4 1 STPLT 4
M 1 4 1 TSESP 4

M 1 4 1 WNDDMP 4
Ml 1 4 1 TSTXMD 4
M2 1 4 1 TSTXMD 4
M3 1 4 1 TSTXMD 4

MAP I 2 2048 CXMAP 4096
MAPA I 4 1024 CXMAP 4096
MAPA I 4 1024 STPED 4096

MAPA I 4 1024 STPLT 4096
MAPC I 2 6 TSPD2 12
MAPE I 2 2048 STPED 4096
MAPL I 2 2048 STPLT 4096

MAPSET I 4 1 TSTXMD 4
MAX I 4 1 VIDPRO 4

MAXDIS R 4 64 WORK17 256
MAXLOD I 4 1 TSLODS 4
MAXLYR I 4 1 WORK21 4

MAXPRI I 4 1 PRAPLU 4
MAXRNG R 4 8 MISC 32
MAXTP I 4 1 PRTPLU 4
MB I 2 270 PRVP 540
MBK 1 4 1 VPCFC 4
MC I 4 6 TXMAPS 24

MCP I 4 1 TSTXMD 4
MDFNO 1 4 1 LR2 4

MDFNO I 4 1 SINGS 4
MDFNO 1 4 1 TB2 4
MDSLCT I 2 3 PROUTI 6
ME 1 2 1TSEDGF 2
NELE I 2 1 TSBNSF 2
MEME I 2 1 TSBNSF 2
MIN I 4 1 VIDPRO 4
MINRNG R 4 8 MISC 32

NJ 1 4 1 VPMLF 4

MJ I 4 1 VPSIMP 4 185

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
----- for FRAME3
MK R 4 1 FIXDT 4 (Sheet 23 of 32)
ML I 2 3 PRLD 6

MLFBB I 2 256 PRFBKM 512
MLFBT I 2 256 PRFBKM 512
MLFLG I 4 1 PRTPLU 4
MLFOB I 2 1 PRFONM 2
MLFOT I 2 1 PRFONM 2

MLM I 2 18 PRESM 36
MM I 2 12288 TXMAPS 24576
MMPOS L 4 1 OPTNS 4
MMW I 4 6144 TXMAPS 24576

MNEG I 4 1 VPSIMP 4
MODATA I 4 1 TSESP 4

MODFLG I 2 1 PROUTI 2
MODJ I 4 1 TSPINC 4
MODL I 2 1 PREDGE 2

MODL I 2 3 TSPDI 6
MODLFT I 2 2 PROUTI 4
MODLN I 2 1 TSPD1N 2

MODR I 2 1 PREDGE 2
MODR I 2 3 TSPD1 6

MODRN I 2 1 TSPD1N 2
MP 1 2 3 PRLD 6
MP I 4 6 TSTXMD 24
MPBIT L 4 1 EDGORD 4

MPFBB I 2 256 PRFBKM 512

MPFBT I 2 256 PRFBKM 512
MPFLG I 2 1 PREDGE 2
MPFOB I 2 1 PRFONM 2
MPFOT I 2 1 PRFONM 2
MPL I 4 1 TSTXMD 4
MPLOD I 4 14 TSTXMD 56
MPM I 2 18 PRESM 36
MPR I 4 1 TSTXMD 4

MR 1 2 3 PRLD 6
MRFBB I 2 256 PRFBKM 512
MRFBT I 2 256 PRFBKM 512
MRFLG I 4 1 PRTPLU 4
MRFOB I 2 1 PRFONM 2

MRFOT I 2 1 PRFONM 2
MRM I 2 18 PRESM 36
MSKE I 4 1 CXMAP 4
MSKE I 4 1 STPED 4
MSKL I 4 1 CXMAP 4
MSKL I 4 1 STPLT 4
mXC I 4 1 TSTXMD 4
MXCT I 4 1 TSTXMD 4
MXEDG I 4 1 CTRL 4
MXLIT I 4 1 CTRL 4
MXLNE I 4 1 CTRL 4
MXLNT I 4 1 CTRL 4
MXLODF I 2 2 TSLODV 4
N 1 4 1 CXMAP 4 186

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
-- 1for FRAME3
N I 4 1 INIT3 4 (Sheet 24 of 52)
N I14 IMODSET 4

N 1 4 1PRDMP 4

N 1 4 1PTLGEN 4

N 1 4 1 PUT 4

N 1 4 1 STPED 4
N 1 4 1STPLT 4
N I 4 1 VIDPRO 4

N 1 4 1VPAINC 4

N 1 4 1VPLTC 4

N 1 4 1WNDDMP 4
NI 1 4 1 VIDPRO 4

N2 1 2 1 ORDER 2
N2 I 4 1 VIDPRO 4
NA 1 4 8 LOCAL 32
NA I 4 25 LUNEDG 100
NA I 4 46 NSOUT 184

NA I 4 46 PATPRO 184

NA I 4 47 PROUT 188

NA I 4 11 SAVELT 44

NA I 4 46 VPAINC 184

NA I 4 12 VPLTC 48

NAF 1 4 1GEN 4

NAFCL I 4 100 STRIP 400
NAFCR I 4 100 STRIP 400

NAME R 8 2 CXMAP 16

NAME R 4 2 EDGGEN 8
NAME R 8 1 PTLSIT 8
NAME R 8 1 SAVELT 8
NAME R 8 2 STPED 16

NAME R 4 2 VPAINC 8

NAME R 8 1 VPLTC 8

NAME R 8 1 WNDDMP 8
NAML R 8 1 STPLT 8
NBYTES I 4 1 RAMCOM 4
NCOL I 4 100 STRIP 400
NCULF C 1 1 WORK4 1
ME 1 4 1FIXDT 4

NE 1 2 5 PRLD 10

NE 1 2 1 TSEDGF 2
NEC I 4 1 PATPRO 4
NECNT I 4 1 PRCTRL 4

NED 1 4 1FRM3 4
NEDG I 4 1 STRIP 4
NEDGES I 2 1 WORK4 2
NEFE I 2 1 TSBNSF 2
NEFLG I 4 90 PRVP 360
MEG 1 4 1PRVP 4
NEHDR I 4 360 PRVP 1440
NEN I 4 1 VIDPRO 4
NENE I 2 1 TSBNSF 2
NEWLST I 2 1 PROUTI 2
NEWMOD I 4 1 PROUTI 4 187

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

NEWOS I 2 3 MODOUT 6 (Sheet 25 of 32)

NEWTHS I 2 1 MODOUT 2

NEWTS I 2 3 MODOUT 6
NFA I 2 3 MODOUT 6
NFACE I 4 256 PRFACE 1024

NFACL I 4 100 STRIP 400
NFACR I 4 100 STRIP 400

NFACT I 4 . EDGORD 4

NFSUM I 4 1 FIXDT 4

NJ 1 4 1VPTEX 4

NL 1 4 1 FIXDT 4

NLHDR I 4 160 PLGVP 640

NLIT I 4 1 PTLSET 4

NLITE I 4 1 PLGVP 4

NLT 1 4 1 FRM3 4

NM 1 4 1 INIT3 4

NMA I 2 3 MODOUT 6

NME I 2 1 MODOUT 2
NMED 1 4 1 CTRL 4

NMLT 1 4 1 CTRL 4

NMSLCT I 2 3 MODOUT 6
NOBJ I 4 1 CXMAP 4

NOCOL 1 2 1 EDGGEN 2

NOCOL I 2 1 FRAME3 2

NOCOL I 2 1 INIT3 2

NOCOL I 2 1 PRIRSV 2

NOCOL I 2 1 PTLSIT 2
NOCOL I 2 1 STPLT 2

NOCOL I 2 1 WNDDMP 2

NOEDG 1 2 1 FRM3 2

NOLIT I 2 1 FRM3 2

NOSEC I 4 1 FRAME3 4

NOSSEC I 4 1 FRAME3 4

NOX I 2 1 PRNXTO 2

NOXF 1 2 1 CASE2 2

NP1 I 4 1 VPAINC 4

NPI 1 4 1 VPLTC 4
NS 1 2 4 PRLD 8

NSBNX I 2 1 NSEDGE 2
NSE I 2 1 PREDGE 2

NSET I 4 1 VIDPRO 4

NSET I 4 1 VPCFC 4

NSET I 4 1 VPFADE 4
NSM I 2 18 PRESM 36
NTERF C 1 1 WORK4 1

NTEXC I 4 90 PRVP 360
NTEXF C 1 1 WORK4 1
NTNENB I 2 1 PRNEFS 2

NUMFAC I 2 1 COLOR 2

NVP I 4 9 FIXDT 36

NVRTEX I 2 1 WORK4 2
NXFACE I 2 1 COLOR 2

NXTBLK C 1 1 WORK4 1 188

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List

NXTBTI 1 2 1 PRFMOD 2 (Sheet 26 of 32)

NXTE 1 4 1 VPAINC 4

NXTEDG 1 2 1 TSCTRL 2

NXTFAC 1 2 64 WORK4 2.28

?JXTL 1 4 1 VPLTC 4

MXTTOP 1 2 1 PRFMOD 2

0 R 4 1PRFBKU 4

OFA 1 2 3 MODOUT 6

OLDLST 1 2 1 PROUT1 2

OLDMOD 1 4 1 PROUT1 4

QLDOS 1 2 3 MODOUT 6

QLDPI1I 2 1 PREDGA 2

OLDP2 1 2 1 PREDGA 2

OLDTHS 1 2 1 MODOUT 2

OLDTS 1 2 3 MODOUT 6

OMA 1 2 3 MODOUT 6

OME 1 2 1 MODOUT 2

OMSLCT 1 2 3 MODOUT 6

ORGEDG 1 4 1 PROLIT 4

ORIEN4T 1 2 60 WORK15 120

Os 1 2 3 PRLD 6
OSBT R 4 1 NSOUT 4

OSFBB 1 2 256 PRFBKM 52

OSFBT I 2 256 PRFBKM 512

OSFLG 1 2 1 PREDGE 2

OSFOB 1 2 1 PRFONM 2

OSFOT 1 2 1 PRFONM 2

OSM 1 2 18 PRESM 36

P R 4 1DECODE 4

P1 R 4 1 TSEDA 4

P1CLPS 1 2 1 PRVIS 2

P1FLG 1 2 1 PREDGA 2

P1UFB 1 2 1 FLGS3 2

P1UP2 1 2 1 FLGS3 2

P2 R 4 1 TSEDA 4

P2FLG 1 2 1 PREDGA 2

P2NE I 2 1 PRVIS 2

P2UFB 1 2 1 FLGS3 2

P3 R 4 1 TSEDA 4

P3ENB 1 2 1 PRFBKD 2

P3ENT 1 2 1 PRFBKD 2

P3EPAS 1 2 1 PRP3S 2

P3EPAT 1 2 1 PRP3S 2

P3FLG 1 2 1 PREDGA 2

P3P R 4 1 TSEDA 4

P3SBR R 4 1 PRTPLU 4

P3SFAC 1 2 8 PRP3S 16

P3SFIB R 4 8 PRP3S 32

P3SFIT R 4 8 PRP3S 32

P3SFLG 1 2 1 PRP3S 2

P3SNL 1 2 8 PRP3S 16

P3SM'P 1 2 8 PRP3S 16

P3SMR 1 2 8 PRP3S 16 189

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
---- - - --- -- - -- -- --- for FRAME3

P3SOS I 2 8 PRP3S 16 (Sheet 27 of 32)
P3STS I 2 8 PRP3S 16

P4 R 4 1 TSEDA 4

P4P R 4 1 TSEDA 4

PA R 4 6 TSTXEV 24

PARAM I 4 10 RAMOUT 40

PARAMI I 4 10 RAMSET 40

PARAM2 I 4 10 RAMOUT 40

PARAM3 I 4 10 RAMOUT 40

PARAM4 I 4 10 RAMSET 40

PARAM5 I 4 10 RAMSET 40

PARAM6 I 4 10 RAMSET 40

PARAM7 I 4 10 RAMSET 40

PBGCNT I 2 1 PRCTRL 2

PCFIC I 2 1280 WORK1O 2560

PCOLNT I 2 1280 WORKI10 2560

PCOLWT I 2 1280 WORK1O 2560

PE R 4 1TSEDA 4

PFACOD I 2 1280 WORK1O 2560

PHEIGH I 2 1280 WORK1O 2560

PHILEV I 2 1280 WORK1O 2560

PI R 4 12 TSTXEV 48

PIJ R 4 12 TSTXEV 48

PL R 4 3 TSTXEV 12

PLSB I 4 6 TXMAPS 24

PN R 4 6 TSBND 24

PNI R 4 6 TSBSNO 24

PNIP1 R 4 6 TSBSNO 24

PNMI R 4 6 TSBND 24

PNP1 R 4 6 TSBND 24

PNPD R 4 1 TSDBN 4

PO R 4 3 WORK11 12

POP R 4 6 TSPD2 24

POPN R 4 3 TSPD2N 12

PPUP1A I 2 1 PRFBKD 2

PR R 4 3 TSTXEV 12

PREMP I 2 1 WORK11 2

PREMPN I 2 1 TSPD2N 2

PREMPY I 2 6 TSPD2 12

PRI 1 2 1ARIN 2

PRI I 2 1 DECODE 2

PRI R 8 1 INIT3 8

PRI I 4 1 OVERID 4

PRIEN I 2 6 TSPD2 12

PRIENN I 2 1 TSPD2N 2

PRILFT I 2 1 NSEDGE 2

PRIRGT I 2 1 NSEDGE 2

PRIRT I 4 256 NSTABL 1024

PRVPDA R 8 1 NSOUT 8

PRVPDA R 8 1 PROUT 8

PSP R 4 1 VPMLF 4

PSUM R 4 2 TSOUT 8

PT R 4 6 TSTXEV 24 190

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List

PTEXT I 2 1280 WORK1O 2560 for FRAME5

PTLFLG L 4 1 OPTNS 4 (Sheet 28 of 32)

PTXSC R 4 1350 PRVP 5400
PUPiF I 2 1 PREDGA 2
PUP2F I 2 1 PREDGA 2
0 R 4 1 DECODE 4
R R 4 i DECODE 4
RA R 4 1 VPFADE 4
RAMTEK I 4 1 RAMOUT 4

RAMTEK I 4 1 RAMSET 4
RB R 4 1FRM1 4
RB R 4 1 VPFADE 4

RCOL I 4 6 RAMCOM 24
RDF343 R 4 1 VPLLI 4
REGCX R 4 1 WORK4 4
REGCY R 4 1 WORK4 4
REGCZ R 4 1 WORK4 4
REGLAT I 4 1 WORK4 4
REGLON I 4 1 WORK4 4
REGRAD R 4 1 WORK4 4
RELFAC I 2 4096 EDREL 8192
RELLPA I 2 90 PRVP 180
RELLPB I 2 90 PRVP 180
RELPRI I 2 256 EDREL 512
RELTPR I 2 2 PROUT2 4
RF R 4 1 VPFDC 4

RFG R 4 1VPFDC 4
RFGI R 4 1 VPFDC 4
RFP R 4 1VPLLI 4
RFS R 4 1 VPFDC 4
RFSI R 4 1 VPFDC 4

RGHT 1 4 1TB2 4
RI R 4 50 PTLSET 200
RIB R 4 30 CXMAP 120
RIB R 4 30 STPED 120
RIB R 4 30 STPLT 120
RIL R 4 1STPED 4
RIL R 4 1STPLT 4
RILL R 4 400 GEN 1600
RIR R 4 1STPED 4
RIR R 4 1STPLT 4
RJ R 4 50 PTLSET 200
RJK R 4 1 PRAUPD 4
RJL R 4 90 PRVP 360
RJLL R 4 512 GEN 2048
RJLP R 4 512 GEN 2048
RJLPP R 4 512 EDGORD 2048
RJLS R 4 1 LUNEDG 4
RJLS R 4 2 PTLGEN 8
RJM R 4 18 PRESM 72
RJR R 4 90 PRVP 360
RJRP R 4 200 GEN 800
RL R 4 1 FRMI 4 191

SYMBOL T 5 DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME5

RLNA R 4 1 PTLSIT 4 for F9 of3

RLNE R 4 1 STPED 4 (Sheet 29 of 32)

RLNE R 4 1 STPLT 4

RLZE R 4 1 STPED 4

RLZL R 4 1 STPLT 4

RNA R 4 8 LOCAL 32

RNA R 4 25 LUNEDG 100

RNA R 4 46 NSOUT 184

RNA R 4 46 PATPRO 184

RNA R 4 47 PROUT 188

RNA R 4 11 SAVELT 44

RNA R 4 46 VPAINC 184

RNA R 4 15 VPLTC 60

RND4 R 4 1 EDGGEN 4

ROT 1 2 2 DCOUT 4

RP R 4 3 FIXDT 12

RPC R 4 3 FIXDT 12

RPRE R 4 1 TSTXMD 4

RR R 4 1 FRM1 4

RSLTN I 4 6 MODSET 24

RSLTN I 4 6 SETRD 24

RSR R 4 1 VPLNDL 4

RT R 4 1 FRMI 4

SAVSSW L 4 32 SVSSW 128

SCALE I 2 60 WORK15 120

SCL R 4 1 TSTXMD 4

SEM 1 2 18 PRESM 36

SH R 4 1 EDGGEN 4

SH4 R 4 1 EDGGEN 4

SHK R 4 8 TSOUT 32

SHRTEX I 2 1 WORKII 2

SHVDWN I 2 1 PRFONM 2

SHVUP I 4 1 PREDGA 4

SINGFL R 4 1 SINGS 4

SINGLE 1 2 2 DCOUT 4

SIZLT R 4 400 GEN 1600

SKY 1 2 3 VPFM 6

SL R 4 1 TSEA 4

SLMAX R 4 1 PRAREA 4

SLOP R 4 100 STRIP 400

SLP I 2 1 EDGGEN 2

SLPSGN I 4 1 PROUT 4

SMLE I 2 1 PREDGA 2

SN R 4 3 FRMI 12

SPCASE I 4 1 DECODE 4

SR R 4 1TSEA 4

SS 1 2 3 TSPDI 6

SSN I 2 1 TSPD1N 2

SSW L 4 32 SSWTCH 128

STPFAC I 2 256 NSEDGE 512

STRFAC I 2 256 NSEDGE 512

SV R 4 3 FIXDT 12

SZP I 4 1 ARECAL 4 192

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
------ -for FRAME3

TI 1 2 1 PRVIS 2 (Sheet 30 of 32)

T2 1 2 1PRVIS 2

T3 1 2 1 PRVIS 2
T4 I 2 1 PRVIS 2

T5 1 2 1PRVIS 2

TBF I 2 1 ARIN 2

TBLCNT I 2 1 NSEDGE 2

TBLK I 4 5 MODSET 20

TBLK 1 4 5 PUT 20

TBLK I 4 5 REED 20

TBLK I 4 5 SETRD 20
TBUSE2 I 2 1 WORK4 2

TCOLOR I 2 144 WORK6 288

TDJL I 4 1 TEXDMP 4

TDJR I 4 1 TEXDMP 4

TEEFD I 4 18 PRESM 72

TEEFDA I 4 1 PRFMOD 4

TEEFDB I 4 1 PRFMOD 4

TEX R 8 1 INIT3 8

TEXCOD I 2 1 WORKI1 2
TEXFLG L 4 1 OPTNS 4

TL R 4 3 TSOUT 12
TLAYER I 4 1920 WORK21 7680

TLFENB 1 4 1 PRFBKD 4

TLFENT I 4 1 PRFBKD 4

TMP I 2 256 EDORD 512
TMP1 R 4 1 ORDER 4

TNEFLG 1 4 1 NSOUT 4
TNEFLG I 4 1 PROUT 4

TNX R 4 64 WORK17 256

TNY R 4 64 WORK17 256

TNZ R 4 64 WORK17 256

TOL 0 4 1 PRESEL 4

TOL R 4 1 PRTPLU 4

TR R 4 3 TSOUT 12

TRANSI C 1 1 WORK4 1

TRIG I 2 1 COLOR 2

TRILAY I 2 1 COLOR 2

TRINUM I 2 1 COLOR 2

TS 1 2 3 PRLD 6

TSCN R 4 1500 STRIP 6000

TSCND R 4 360 PRVP 1440

TSFBB I 2 256 PRFBKM 512

TSFBT I 2 256 PRFBKM 512

TSFLG I 2 1 PREDGE 2

TSFOB I 2 1 PRFONM 2

TSFOT I 2 1 PRFONM 2

TSK R 4 8 TSOUT 32

TSM I 2 18 PRESM 36

TSTFAC I 2 1 COLOR 2

TSUM R 4 4 TSOUT 16

TXCODE I 2 18 TSPD2 36

TXCODN I 2 3 TSPD2N 6 195

3YMBOL T 3 DIMNO LOCATI TOTAL# Table C-4: Variable List
------ - ------ ------ ------ for FRAME3

flXSC R 4 30C0 GEN 12000 (Sheet 31 of 52)
rXSHDF 1 2 6 TSPD2 12
rXSHDN I 2 1 TSPD2N 2
rXTAB I 4 3 MISC 12
JCNT I 2 1 NSEDGE 2

JFACEL I 4 200 NSRSLV 800
JFACER 1 4 200 NSRSLV 800

JFQFBB I 2 1 PRFBKD 2

JFOFBT I 2 1 PRFBKD 2

JFOPiB I 2 1 PRFBKD 2

JFOPIT 1 2 1 PRFBKD 2

]FOP2B I 2 1 PRFBKD 2

JFOP2T I 2 1 PRVBKD 2

JJLEFT I 4 200 NSRSLV 800

JLOC 1 4 1 NSRSLV 4

UPRIRT I 4 200 NSRSLV 800

'SEDTP I 2 8 PRTPL 16
JSEP3 R 4 1 PRDIIP 4

JSEP3 R 4 1 PRFBKU 4
JSEP3B I 2 1 PRP3S 2

JSEP3T 1 2 1 PRP3S 2

]VSWS R 4 9 FIXDT 36

'JVW R 4 9 FRMJ. 36

VE 1 2 4 PRLD 8

VFOV R 4 1 FRM1 4

VIB I 2 1 PREDGE 2

VIT I 2 1 PREDGE 2

VLABEL I 2 256 WORK4 512

VP R 8 3 FRMI 24

VPN R 4 9 FRM1 36

vX R 4 256 W0RK4 1024

VY R 4 256 WORK4 1024

vz R 4 256 WORK4 1024

WJ R 4 2 ARECAL 8

WND R 4 3 FRM1 12

WNDFLG L 4 1 JWIN 4

x R 4 1 PTLSIT 4

X R 4 1 STPED 4

X R 4 1 VIDPRO 4

XCD R 4 1 TSESP 4

XCDJ1 R 4 1 TSESP 4

XCDJL R 4 1 TSESP 4

XCDL1 R 4 1 TSESP 4

XCDSUM R 4 2 TSINC 8

XCN R 4 1 TSESP 4
XCNJ1 R 4 1 TSESP 4
XCHJL R 4 1 TSESP 4

XCNL1 R 4 1 TSESP 4
XCI4SUM R 4 6 TSINC 24
XJL 1 2 2 TSINC 4

XLATMN I 2 1 TSPD2N 2

XLATIIS 1 2 6 TSPD2 12

XLT R 8 1 INIT3 8 194

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List
for FRAME3

XMAP I 4 256 TXMAPS 1024 (Sheet 32 of 32)
XP R 1 12 TSESP 48
XS T 2 1 ARIN 2
XSIZ 1 4 1 RAMSET 4
YSIGCN I 4 1 RAMSET 4
YSIZ I 4 1 RAMSET 4
2FACOD 1 4 1 COLOR 4
ZPAREN I 4 1 COLOR 4
2PRIO I 4 1 COLOR 4

TOTAL

SIZE 5,774
DIMN 93,295
TOTAL 263,488

195

SYMBOL T S DIMN# LOCATI TOTAL# Table C-5: Variable List
-----. .----.-. ----.... for PRIPRO

AOUPL £ 2 512 PRIUOL 1024 (Sheet I of 7)
AUORPL I 2 512 PRIUQL 1024
BUFF I 4 320 BFRI 1280
BUFF I 4 320 BFRO 1280
COMNAM R 8 1 PPINP 8
D.AA I 4 1 MQDCNT 4

D.AA I 4 1 NEWBLK 4

D.AA 1 4 1 PPCNT 4

D.AA I 4 1 PPFPL 4

D.AA 1 4 1 PPINP 4

D.AA I 4 1 PPLIST 4

D.AA I 4 1 PPUOL 4
D.AA 1 4 i PUT 4

D.AA I 4 1 RDBLK 4

D.AB T 4 1 PPINP 4
D.AB I 4 1 PPLIST 4

D.BA I 4 1 MODCNT 4

D.BA I 4 1 PPCNT 4

D.BA I 4 1 PPFPL 4
D.BA I 4 1 PPLIST 4

D.BA I 4 1 PPUQL 4

DPL R 4 1 PPCNT 4

EOF 1 4 1 REED 4

FBUF R 4 4 PPINP 16

FCDAT I 2 32768 PRIAFL 65536

FCSEQ I 2 4096 PRIAFL 8192

FDAT R 4 1 PPCNT 4
FILNAM R 8 1 PPINP S

FLAGS I 4 832 PRIAML 3328

FNAM R 8 1 RDBLK 8

FNM R 8 3 RDBLK 24

FORI R 4 1 PPINP 4

FORJ R 4 1 PPINP 4

FPLNAM R 8 1 WRTFPL 8

FPRI I 4 4096 CPSTM 16384

HIADR I 2 1 PPFPL 2
I 1 4 1i MODCNT 4
I 1 4 1 NEWBLK 4
I 1 4 1 PPCNT 4
I 1 4 1 PPFPL 4
I 1 4 1 PPINP 4
I 1 4 i PPLIST 4

I 1 4 1 PPMSG 4

I 1 4 1 PPSORT 4
I 1 4 i PPUOL 4

I 1 4 1 PRIPRO 4

I 1 4 i PUT 4

I 1-4-_ 1 REED 4

I0 1 2 1 MODCNT 2
10 1 2 1 NEWBLK 2
I0 1 2 1PPFPL 2
10 1 2 1 PPINP 2
I0 I 2 1 PPLIST 2 196

SYMBOL T S DIMN# LOCATI TOTAL# Table C-5: Variable List
for PRIPRO

Ii I 2 1 MODCNT 2 (Sheet 2 of 7)
II 1 2 1 PPFPL 2

11 I 2 1 PPLIST 2

12 1 2 1 PPCNT 2

1256 I 2 1 NEWBLK 2

I2BUF I 2 8 PPINP 16

1320 I 2 1 NEWBLK 2

15 1 2 1 PPFPL 2

I5 1 2 i PPLIST 2

IABSAD I 4 1 SETRD 4
IACT 1 4 1 PRIBLK 4

IADR I 4 1 RDBLK 4

IARG 1 4 i PUT 4

IARG 1 4 1 REED 4

IARG I 4 1 SETFIL 4

IARG I 4 1 SETRD 4

IB 1 4 i PPLIST 4

IBI I 4 1 NEWBLK 4

182 I 4 1 NEWBLK 4

IB3 I 4 1 NEWBLK 4

IBFAC 1 2 1 PPFPL 2

IBFAC I 2 1 PPLIST 2

IBIT 1 2 8 PPLIST 16

IBITM I 2 16 PPLIST 32

IBUF I 4 4 PPINP 16

IBUO I 2 1 PPFPL 2

IBUO 1 2 1 PPLIST 2

IBYTE I 4 1 PPCNT 4

Ic 1 4 1 MODCNT 4

ICLOS I 4 1 PPINP 4

ICODE I 4 1 PPINP 4

ID 1 4 i PPLIST 4

IDAT I 2 8 PPLIST 16

IDAT I 4 512 PRIBLK 2048

IDATA I 4 528 PRIBLK 2112

IDBLK 1 2 2 PPINP 4

IDTA 1 4 1 PPCNT 4

IELAP I 4 1 PRIPRO 4

IERR I 4 1 PRIPRO 4

IFAC 1 2 1 PPFPL 2

IFAC I 2 1 PPLIST 2

IFD I 2 8 PPFPL 16

IFPRI I 2 4096 CPSTM 8192

IHDR 1 4 1 PRIBLK 4

IHEAD 1 4 16 PRIBLK 64

IHIGH 1 2 1 PPFPL 2

II I 4 1 MODCNT 4

II I 4 1 PPFPL 4

II 1 4 1 PPINP 4

II I 4 1 PPLIST 4

IJ 1 4 1 MODCNT 4
IJ 1 4 1 PPLIST 4

IK I 4 1 PPINP 4 197

SYMBOL T1 S DIMN# LOCATI TOTAL# Table C-5: Variable List
---- - ---- - -- --- ---- fo PRIPRO

ILAST 1 4 1 NEWBLK 4(Sheet 3 of 7)
ILAY 1 4 21 PPLIST 4
ILOW 1 2 1 PPFPL 2

ILU 1 4 3 RDBLK 12

1111 1 4 15 PPMSG 60

1112 1 4 15 PPMSG 60

1113 1 4 15 PPMSG 60

1114 1 4 15 PPMSG 60

1115 1 4 15 PPMSG 60

1116 1 4 15 PPMSG 60

1117 1 4 15 PPMSG 60

INs I 4 15 PPMSG 60

IMESS 1 4 120 PPMSG 480

IMIN 1 4 1. PRIPRO 4

IIIOD I 2 1 PPFPL 2

IMOD 1 4 1 PPINP 4

IMOD 1 2 1 PPLIST 2

INC 1 4 1 PRIBLK 4

IWOX 1 2 8 MODCNT 16

INDX 1 2 32 PPUOL 64
INIT 1 4 3 RDBLK 12

INUM I 4 1 MODCNT 4
iNUM I 4 4 PPINP 16

IOBJ I 2 1 PPFPL 2

IOBJ I 4 1 PPINP 4

IOBJ I 2 1 PPLIST 2

Ip 1 4 2 PPCNT 8
IP 1 4 1 PPUOL 4
IPAIR I 4 1 PPCNT 4

IPB 1 2 1 PPFPL 2

IPB 1 4 1 PPINP 4

IPB I 2 1 PPLIST 2

IPD 1 4 1 NEWBLI< 4
IPRI 1 4 1 PPFPL 4

IPROC 1 4 1 PUT 4

IPROC I 4 1 REED 4

IPROC I 4 1 SETRD 4

IR 1 4 1 PPFPL 4

IR I 4 1 PPLIST 4

IRANG I 2 1 PPFPL 2

IRANG I 2 1 PPLIST 2

IREC I 4 5 BFRI 20

IREC 1 4 5 BFRO 20

IRFC 1 4 1 PUT 4

IRFC 1 4 1 REED 4
IRFC 1 4 1 SETRD 4

IRGHT 1 4 1 PPCNT 4

IRNG I 2 4096 PPINP 8192
IRX 1 4 1 SETRD 4

ISEC 1 4 1 PRIPRO 4

ISEC I 4 1 RDBLK 4

ISIDE I 4 1 PPCNT 4

ISTAT 1 4 1 PRIPRO 4 198

SYMBOL T 5 DIMN# LOCATI TOTAL# Table C-5: Variable List
------ - - - - -- - -for PRIPRO

ISTAT I 4 1 PUT 4 (Sheet 4 of 7)

ISTAT I 4 1 REED 4

ISTAT I 4 1 SETFIL 4

ISTAT I 4 1 SETRD 4

ISTIM I 4 3 PRIPRO 12

ISUM I 4 1 PPCNT 4

ISUM 1 4 1 PPLIST 4

ITIM I 4 3 PRIPRO 12

ITYB I 4 1 PPFPL 4

ITYB 1 4 1 PPINP 4

ITYP I 2 1 PPFPL 2

ITYP I 2 1 PPLIST 2

IUGB I 4 1 PPINP 4

IUOB 1 4 1 PPINP 4

IUP 1 4 1 PUT 4

IUP 1 4 1 REED 4

IVP 1 4 1PPCNT 4

IWORD 1 4 1 NEWBLK 4

IWORD 1 4 1 PPINP 4

IWORD 1 4 1 RDBLK 4

IX I 4 5 BFRI 20

IX 1 4 5 BFRO 20

Iz 1 4 1MODCNT 4

IZERO 1 4 1 PPLIST 4

IZERO 1 4 1 PRIBLK 4

J 1 4 1 MODCNT 4
J 1 4 1PPCNT 4
J I 4 1 PPINP 4

J I 4 1 PPLIST 4

J 1 4 I PPSORT 4

J 1 4 1 RDBLK 4

Jil I 4 1 PUT 4

Jil 1 4 1 REED 4

JARG 1 4 i PUT 4

JARG 1 4 1 REED 4

JARG 1 4 1 SETRD 4

JDEX I 4 1 MODCNT 4

JDEX I 4 1 PPSORT 4

JDEX I 4 1 PPUOL 4
JDEX I 4 1 RDBLK 4

JJ 1 4 1 PPFPL 4

JJ 1 4 i PPLIST 4

JJ 1 4 1 PPUOL 4

JJ 1 4 1 RDBLK 4

JP 1 4 1 PPSORT 4

JPREV I 4 1 MODCNT 4

JREC 1 4 1 REED 4

JX 1 4 i PUT 4

JX 1 4 1 REED 4

K 1 4 1 PPCNT 4

K 1 4 1 PPSORT 4

K 1 4 i PUT 4

K 1 4 1 REED 4 199

SYMBOL T S DIMN# LOCATI TOTAL# Table C-5: Variable List
for PRIPRO

KARG 1 4 1 PUT 4 (Sheet 5 of 7)
KDEX I 4 1 PPSORT 4

KK 1 4 i PPUOL 4

KNUM I 4 1 PPFPL 4

KNUM I 4 1 PPLIST 4

KVAL I 4 1 PPSORT 4

LAYER I 4 1 PPFPL 4

LBLK I 2 1 PPFPL 2

LBLK I 2 1 PPLIST 2

LCODE I 4 3 RDBLK 12

LEFT 1 4 i PUT 4

LEFT 1 4 1 REED 4

LENG I 4 1 RDBLK 4

LGCOD I 4 1 RDBLK 4

LMOD I 2 1 PPLIST 2

LOADR I 2 1 PPFPL 2

LOADRP I 4 1 PPFPL 4

LOBJ I 2 1 PPLIST 2

LOHI I 2 8192 PRISRT 16384

LPCT 1 4 I PUT 4

LPCT 1 4 1 REED 4

LRANG I 2 1 PPLIST 2

LUAFL I 4 1 PPINP 4

LUAFL I 4 1 PRIPRO 4

LUBLK I 4 1 RDBLK 4

LUERR I 4 1 PPMSG 4

LUO I 2 1 PPLIST 2

LUSW I 4 1 MODCNT 4

LUSW I 4 1 NEWBLK 4

LUSW I 4 1 PPFPL 4

LUSW I 4 1 PPINP 4

LUSW I 4 1 PPLIST 4

LUSW I 4 1 PPUOL 4

LUSW I 4 1 PRIPRO 4

M 1 4 1 PPINP 4

M 1 4 i PPUOL 4

M 1 4 1 PUT 4

M2 1 4 1 PPSORT 4

MACT I 4 16 PPCNT 64

MHDR I 4 1 PPCNT 4

MINRNG I 4 1 PPINP 4

MJ 1 4 1 PPLIST 4

MN1 1 2 1 PPFPL 2

MN1 I 2 1 PPLIST 2

MNUM I 2 1 NEWBLK 2

MOBJ I 4 128 PRIMOC 512

MODC I 4 8 MODCNT 32

MODK I 4 8 PRIMOC 32

MODNUM I 2 832 PRIAML 1664

MOL I 4 1 PPLIST 4

MOVL I 2 4096 PRILST 8192

MP I 4 16 MODCNT 64

MPRN I 2 8 PPFPL 16 200

SYMBOL T S DIMN# LOCATI TOTAL# Table C-5: Variable List
for PRIPRO

MSIZE I 4 1 PRIBLK 4 (Sheet 6 of 7)
N 1 4 i PUT 4

N1 1 4 1 MODCNT 4

Ni 1 4 1PPUOL 4

NAF I 4 1 PRIAFL 4

NAO I 2 832 PRIAML 1664

NF 1 4 1 PPFPL 4

NF 1 4 i PPLIST 4

NFTY I 4 5 PPINP 20

NGR 1 4 1 PPFPL 4

NGRP I 4 1 PRILST 4

NGS 1 4 1 PPUOL 4

NMO 1 4 1 PRIMOC 4

NMOD I 4 1 PRILST 4

NN 1 4 i PPUOL 4

NO 1 4 1 RDBLK 4

NOBJ I 2 8 MODCNT 16

NOM I 4 1 PPLIST 4

NOM 1 4 1 RDBLK 4

NOSEC I 4 1 PRIPRO 4

NOSSEC I 4 1 PRIPRO 4

NOWRD I 4 1 RDBLK 4

NPAIR I 4 1 PPCNT 4

NPL 1 4 1 PPCNT 4

NRANG I 4 1 PPFPL 4

NRASP I 4 1 PRIBLK 4

NRATF I 4 1 PRIBLK 4

NRSP I 4 1 PPCNT 4

NRTF i 4 1 PPCNT 4

NUM I 4 1 WRTFPL 4

NUMB I 4 1 PRIMOC 4

NUMBR I 4 1 PPUOL 4

NUMOBJ I 2 1 MODCNT 2

NUO I 4 1 PPLIST 4

NUO 1 4 i PPUOL 4

NUOC I 4 1 PRIUOL 4

NUOG 1 2 512 PRIUOL 1024

NWORD I 4 3 RDBLK 12

RSLTN I 4 6 SETRD 24

SECDIR I 4 1 RDBLK 4

SECUG I 4 1 RDBLK 4

SSW L 4 32 SSWTCH 128

TBLK 1 4 5 PUT 20

TBLK I 4 5 REED 20

TBLK I 4 5 SETRD 20

TEMP R 4 1 PPINP 4

UGADR I 2 64 PRIUF 128

UGSCF R 4 64 PRIUF 256

UORL I 4 1 PPFPL 4

UORL I 4 1 PPLIST 4

UORL I 4 512 PRIUF 2048

VEC R 4 984 PRIVP 3936

VPSUM R 4 1 PPCNT 4 201

SYMIBOL T S DII N# LOCATI TOTAL# Table C-5: Variable List

VPV R 4 3 PRIBLK 12 for PRIPRO

XSCALE R 4 1 PRIBLK 4 (Sheet 7 of 7)

TOTAL

SIZE 1,170
DIMN 69,.682
TOTAL 157,24J2

202

SYMBOL T S DIMN LOCATI TOTAL Table C-6: Variable List
------ -f o r S C G E N

AK R 4 1 FIXDT 4 (Sheet I of 5)

ATT R 4 3 FRMI 12

AZIM R 4 1 FRM1 4

BLKAMT I 4 8 DRCTRY 32

BLNFLG L 4 1 OPTNS 4

BUFF I 4 320 BFRI 1280

BUFF I 4 320 BFRO 1280
CLC I 4 18 FRID 72
COLOR R 4 768 TABLS 3072
CSI 1 2 6 FR1D 12
CV R 4 1FRM1 4

CW R 4 1 FRM1 4
D.AA I 4 1 DRCTRY 4
D.AA I 4 1 PUT 4

D.AB I 4 1 ORCTRY 4

D.BA I 4 1 DRCTRY 4

D.BB I 4 1 DRCTRY 4

DF1B R 4 1 FADE 4

DF1T R 4 1 FADE 4

DF2 R 4 i FADE 4

DFP R 4 1CPFM 4

DIR I 2 1686 DRCT 3:372

EDGFLG L 4 1 OPTNS 4

ELEV R 4 1 FRM1 4

EOF 1 4 1 REED 4

ERRMSG I 4 1 MISC 4

F1RFLG L 4 1 OPTNS 4

FADFLG L 4 1 OPTNS 4

FILE R 8 5 SCGEN 40

FOPG R 4 1 VPFM 4

FOPS R 4 1 VPFM 4

FORI R 4 1 INPUT 4

FORI R 4 1 SCGEN 4

FORJ R 4 1 INPUT 4

FORK R 4 1 INPUT 4

FORKSS R 4 1 INPUT 4

FRIEDB I 4 2304 FRID 9216
FVPG R 4 1 VPFM 4
FVPS R 4 1 VPFM 4
FWPG R 4 1 VPFM 4
FWPS R 4 1 VPFM 4
GND 1 2 3 VPFM 6
HAZG 1 2 3 VPFM 6
HAZS 1 2 3 VPFM 6
HFOV R 4 1 FRM1 4
I I4 1 DRCTRY 4

I I4 1 INPUT 4
I 14 1 PUT 4

I 1 4 1 REED 4

1 I4 1SCGEN 4
I0 1 4 1FRM1 4

IABSAD I 4 1 SETRD 4
IARG I 4 1 DRCTRY 4 203

SYMBOL T S DIMN LOCATI TOTAL Table C-6: Variable List
for SCGEN

IARG I 4 1 PUT 4 (Sheet 2 of 5)

IARG 1 4 1 REED 4

IARG I 4 1 SETFIL 4

IARG I 4 1 SETRD 4
IBN I 4 1 DRCTRY 4

ICHAN I 4 1 OPTNS 4
ICOSYS I 4 1 MISC 4

ICSI I 4 1 DRCTRY 4

IEF 1 4 1 MISC 4

IELAP I 4 1 SCGEN 4

IFOGC I 4 3 CPFM 12

IFXLOD I 4 1 OPTNS 4

IGNDC I 4 3 CPFM 12

IHAZC I 4 3 CPFM 12

ILOD I 4 1 DRCTRY 4

IMIN I 4 1 SCGEN 4

INBN I 4 1 DRCTRY 4

IPROC 1 4 1 PUT 4

IPROC I 4 1 REED 4

IPROC I 4 1 SETRD 4
IPTR I 4 1 DRCTRY 4

IRC 1 4 1 FRiD 4

IREC I 4 5 BFRI 20

IREC I 4 5 BFRO 20

IRFC 1 4 i PUT 4

IRFC 1 4 1 REED 4

IRFC I 4 1 SETRD 4

IRN I 4 1 DRCTRY 4

IRX 1 4 i SETRD 4

ISCR I 4 3072 INPUT 12288

ISEC 1 4 1 SCGEN 4

ISKYC I 4 3 CPFM 12

ISOPTI I 4 1 INPUT 4

ISOPT2 I 4 1 INPUT 4

ISTAT 1 4 1 PUT 4
ISTAT I 4 1 REED 4

ISTAT I 4 1 SCGEN 4

ISTAT I 4 1 SETFIL 4
ISTAT I 4 1 SETRD 4
ISTIM I 4 3 SCGEN 12

IT 1 4 1 DRCTRY 4

ITIM I 4 3 SCGEN 12

IUP 1 4 1 PUT 4

IUP 1 4 1 REED 4

IX 1 4 5 BFRI 20
IX, 1 4 5 BFRO 20

1 14 1DRCTRY 4

J 4 1 INPUT 4

JO 1 4 1FRM1 4
1 14 1 PUT 4
J1 14 1 REED 4

JARG 1 4 i PUT 4

JARG I 4 1 REED 4 204

SYMBOL T S DIMN LOCATI TOTAL Table C-6: Variable List
-- for SCGEN

JARG I 4 2 SETRD 4 (Sheet 3 of 5)
JB 1 4 1 DRCTRY 4
JD Ii 1DRCTRY 4
JDIR I 4 1 DRCTRY 4
JE 1 4 1DRCTRY 4
JEL 1 4 1JWIN 4
JER 1 4 1 JWIN 4
JL 1 4 1 DRCTRY 4
JREC 1 4 I REED 4
JSSW I 4 1 MISC 4
JX 1 4 i PUT 4
JX 1 4 i REED 4

K 1 4 1DRCTRY 4
K 1 4 1 INPUT 4
K 1 4 1 PUT 4
K 1 4 i REED 4

K! 1 4 1 DRCTRY 4
KARG 1 4 I PUT 4
KD 1 4 1 DRCTRY 4

KDPTR I 4 8 DRCTRY 32

KGND R 4 1 VPFM 4

KI R 4 1 FRM1 4
KIJ R 4 4 FIXDT 16

KJ R 4 1 FRM. 4
KLOD I 4 1 FIXDT 4

KLTAB R 4 16 FIXDT 64
KRASH I 2 1 VPFM 2
KS R 4 1 FRM1 4
KSKY R 4 1 VPFM 4
KSS 1 4 1 INPUT 4

KUVW R 4 6 FIXDT 24
L 1 4 1 DRCTRY 4
LB 1 4 1 DRCTRY 4
LEFT 1 4 1 PUT 4

LEFT 1 4 I REED 4
LN 1 4 1 MISC 4
LO 1 4 1MISC 4

LOCFLG L 4 1 OPTNS 4
LODCRS 1 2 1 DRCTRY 2
LODFIN I 2 1 DRCTRY 2
LODMOD L 4 1 OPTNS 4
LPCT 1 4 i PUT 4
LPCT 1 4 I REED 4
LSP 1 4 1 MISC 4

LST 1 4 1 MISC 4
LTPARM R 4 2816 TABLS 11264
LUCLT 1 4 1 INPUT 4
LUCMN I 4 1 CMNOUT 4

LUENV I 4 . DRCTRY 4
LUHDR I 4 1 INPUT 4
LUVPF I 4 1 INPUT 4
M 1 4 1 DRCTRY 4
M 1 4 1 PUT 4 205

SYMBOL T 5 DIMN LOCATI TOTAL Table C-6: Variable List
------ -for SCGEN
MAXR*- R 4 8 MISC 32 (Sheet 4 of 5)
MINRNG R 4 8 MiSC 32
MK R 4 1 FIXDT 4
MMAT R 4 21 MMDAT 84
MMC R 4 21 MMDAT 84
MMPOS L 4 1 OPTNS 4
N 1 4 1DRCTRY 4
N 1 4 I PUT 4

NE 1 4 1 FIXDT 4
NEWFLG L 4 1 DRCTRY 4

NFSUM I 4 1 FIXDT 4
NL I 4 1 FIXDT 4

NOEDB I 4 1 FRID 4
NOSEC I 4 1 SCGEN 4

NOSSEC I 4 1 SCGEN 4

NVP I 4 9 FIXDT 36
OFF I 4 8 DRCTRY 32
PTLFLG L 4 1 OPTNS 4
RB R 4 1 FRM1 4

RBH : 4 30 DRCTRY 120

REGCT I 4 1 FRID 4
RL R 4 1 FRMI 4

RP R 4 3 FIXDT 12

RPC R 4 3 FIXDT 12

RR R 4 1FRM1 4

RSLTN I 4 6 SETRD 24

RT R 4 1 FRM1 4

SCR R 4 3072 INPUT 12288

SKY 1 2 3 VPFM 6

SN R 4 3 FRMI 12

SSW L 4 32 SSWTCH 128
SV R 4 3 FIXDT 12

TBLK 1 4 5 PUT 20

TBLK 1 4 5 REED 20
TBLK I 4 5 SETRD 20
TCSI I 2 256 DRCTRY 512

TEXFLG L 4 1 OPTNS 4
TWO16 R 4 1 INPUT 4
TXTAB I 4 3 MISC 12
UVSWS R 4 9 FIXDT 36
UVW R 4 9 FRMI1 36
VFOV R 4 1 FRMI1 4
VP R 8 3 FRM1 24
VPN R 4 9 FRMi 36
WND R 4 3 FRMi 12
WNDFLG L 4 1 JWIN 4
X R 4 1 INPUT 4
ZC R 4 I FADE 4

ZMIN R 4 i FADE 4

206

TOTAL Table C-6: Variable List

for SCGEN
SIZE 820 (Sheet 5 of 5)

DIMN 15,098
TOTAL 56,498

207

Appendix D

Collected Data on Operations

208

Appendix D

The data in this appendix represents the data collected
regarding the number and types of operations performed on
each type of variable. It is divided into six sections as
follows:

Section 1 - 2 Byte Integer Operations
Section 2 - 4 Byte Integer Operations
Section 3 - Logical Operations
Section 4 - 4 Byte Real Operations
Section 5 - 8 Byte Real Operations
Section 6 - Other Operations

The column headings for the first five sections are
described below.

MODULE name of the subroutine or program containing
the operations

INTERNAL name of the internal subroutine contained
within the module

A# thru R# number of operations of each type as follows:
A +
B -
C *

D/
E *

F =

G Arithmetic IF
H Logical IF
I ELSEIF
J .EQ.
K .NE.
L .GT.
M .LT.
N .GE.
0 .LE.
P .AND.
Q OR.
R .NOT.

209

The column headings for the sixth section are described
below.

MODULE name of the subroutine or program containing
the operations

INTERNAL name of the internal subroutine contained
within the module

A# thru T# number of operations of each type as follows:
A GOTO
B GOTO ASSIGN
C Computed GOTO
D DO
E DO FOR
F DO FOREVER
G DO UNTIL
H DO WHILE
I LEAVE
J Procedure Call
K Subroutine CALL
L READ
M WRITE
N FORMAT
O SELECT CASE
P CASE
Q ASSIGN
R REWIND
S RETURN
T STOP

210

Appendix D

Collected Data on Operations

Section 1 - 2 Byte Integer Operations

211

40DULE INTERN. A* B* C# D# E# F# G# M# I# 3# K# IC N#~ 0* P# Q# R#

AREAl 4 2 6 7
AE27 12 7 16 4

AREA3 2 6 16 22
qREA4 .5 a 92

ARECAL

C. NOUT
COL 5 87

COLOR 4 6 4 1 2 1
MLOR LYERING I ~7 13 2 22 2

CPBLN'D
?-FADE 1 6

CPLITE 14

CVAP 41 1
DEC3DE 12716 21 158 93 745 37 2 3 1 7 1
DLCAL
DRC7r~y 7
VICL 22

EN'GEN 4 5 3
EDGGRD
EZDGGOl FACVjT2

EDWO.LT
EZRPT
=AccCim 3
FACOUT
FACPRs 3 2
;QDCM P6

"DROiIT
NIT2

117T3 4

INPUT 2

LR2 345 22 2 16 6 2 2

L,32 P ODSELECT 2 1 1 2
LST~lJT
.4DCLR2
01AD
.*ODCL.R

!qODFY2
1100 WY
M~OD
."ODSET
m0DST2
'to"R 3 2 73 33 131 6 1 1

212

MCDULE INTERNL A# B# C# D# E# F# S# H#i 1# J# K# Li .4# S# G# Pi # R#

.\EAVL 1 1
NED
NEWPL
)SEDGR la a
NGOUT 12R. 3 1 2
SRSLV 3 314 a 6 2

%SRSLY ORINTEDGE

.ORDER 4

OVERID 2 14 A ~ a 12

'-)RSEL 1 9 4 2 1 1
PATPRO
PPCNT I
PPFPL 8 & 1 2 21 4 2 4 1 3

o 14p12 1
PPLIST 6 2 1 33 9 2 7 1

PPO.S6
;9SORT 3

PPUOL
PRPLU 133 65 6

PRAREA 1

PRALPD 11 3 i It

PRCLR1
.;)D.P
,;DGR 1 1 1

PREEFS 6 .7 1.9 211 2 7

-ELX 5 7 6 2

P R ED 1 2 4 4

DRESEi -8 4 39 29 3

PRFB~w 120 39 10 82 1! 8 32 15
DRlIN I T

PRIPRO
;.R1qsv 4 4 3 a 2

PRNEFS 22 Eo 9 24 7 6

P R*XIT 0 3 Ag 15 16 2 2 3

PROUJT 2 47 14 8 5 3 2 3

PRSTOR 1.2

PRTPL.U 1 23 21 19 15 1 1 8 2

:)RTPLUJ CLEART RAN 3
PRYIS 13 15 i

PTCAL 1 2 2
PTCLR2
PTLGEN
PTLSIT 2 3 3

PUT
PUTf2
PUTCLR
P4JTSEt
PUTST2
.sPowT

'RAW 13
RDa.,4
REED 213

MODULE INTERNAL. A# 2 C# DO E# F# G# H# I# J# A~# L# M# NO 0# Pt G# R#

REED2
ROTNAT
RSTPED
SAVELT 3
SCGEN
SETFIL
SETRD
SETRD2
SIMS 3 164 116 114 2 5 3 1 4 7
SINGS MCDSELECT 2 1 1 2
ST7'ED 4 2 a
STPLT 5 1 2
TB2 1 163 62 27 39 1 1 5 2
TB2 MODSELECT 2 1 1 2
-MJLT

TRANS
7SBST 4 55 23 4 it 2 7 3 1 2

TSBSNO 2 4 3 1 5 1 1 13
TsDBN
TSEA

TSED6R 1 18 3 1 1 32
7SE1FQV 1 ~
TSESP 3 a 18 4 4 I1 1
'SINIT .

TSLOD
'SLODS t1 15 3 7 1 1
TSMUX 23 a
-spillc 1 3 9 a
TSSHKD 2 5 3
-STVD 1 6 7 3 5 2

TSTXP.D SETLP'.0D
7STXM'D SETuPP 2 1 1 1

TTJMUL
TVEC
UPDATE
VEC
VIDOUT
VIDPRO 3 a 4 1
VPAINC 38 0
VPUZC 9 1 4
VPFADE 2 1 1
VPIFLD
YPILN 2
VPL14DL
V1PLTC 5
VP4L 14 3
VPSIMP !5 1 3
VPTEX 2 2
YTP i 4 1 11 5
WINDOW
WN4DOM
WRTFPL 214

Appendix D

Collected Data on Operations

Section 2 - 4 Byte Integer Operations

215

%2DULE INTEW.L P* 4 B# DO; 4 Si #* 3* j# K# LO MO N# 0# P# G# Rt

ARER2 13
AREA3 24
AREFA4 2
4RECAL 5 3 6 3
AiREQD
CANOUT
COL
COLO9 a 2a
COLOR ALAYERING 1 5 1 1
2:B1.ND1
CPFADE
OPLITE 1 3 1 1
CSDEF 2
CX.IVP 5 4 24 15 3 5 1 4 2
DECODE 9 15
SMCAL 2
DRUTRY 14 5 2 32 7 7 4 1 5
ZDGCA. 12 53 7 2 4 112 1 1
EflGGEN 14 2 40 9 218o 2 2 1 5 1

:-G.D514 6 5 3 a

EDGORD FPCVT 1 2 a
EMOUT 4 6 3 1 2
ERRRPT
:Acco.'q 6 1 6 1 15 a 3 4 1
FPZGUT 5 12 1
PCCPRO 2 4 1 37 9 6 6 2

51 19 40 1 4 8

FV D 9 2 1 1
RM!10 3 4 1 3d 9 4 1 5 1

FRAME2 28 111It 2 71 6 12 3
FRAME3 5 3 4 1 16 7 5 3 3 5
HDROIJT 2 4 1 1 a

iNIT2 1 27
INIT3 I I 1o 2 2 2 2
INPUT 24 2 1 38
LNGLAT I I
LOD 7 3 2 8 1 1
LR2 60 1 1
LR2 MODSELECT a
LSTO.JT
1DCLR2 2 2 1 1
w, AD 10

410CLR 2 2 1 1
MODcNT 6 2 1 18 1 1

MODFY2 10 2 28 6 1 2 2 2 21
MODIFY 10 2 1 28 6 1 2 a a 2

MODRD 8 3 1 19 5 1 1 2 1 1
WST3 1 1 5 21 1

flODST2 3 a 1 5 2 1 1 11

MODULA 2 7 9 2 3 5 3 2 1

'4WE 216

i'ODLE iNTERNAL A# B# C# DI E# F# G# HI N JA K# L# Mt N# 0# P# G# R#

MLUT
.NEWBLK 1 1 17 3 I
NEWED 5 a5 6 2 4 2I4
NEWL 5 15 1
NSEfl6R 1 7 3 2 11

%SOUT 7 36 5 1 3 1 6 1

NSRSLV 17 5 85 2 1 114 63 1 51

,%RSLV PRINTED6E 1 2 1

ORDER 6 2 4 3 3

'OERID 11 a 4 4
PARSE1
PATPRO 3 2 5 2 2

PprCNT 13 2 4 1 32 3 2 1

'PFPL 1 6 2 1 16 6 1 4

PPINP 6 1 24 1t 5 5 1 1 2 1

:,L.ST 6 5 1 a5 3 1 a
P9MS6
--PORT 227 2 1

PPUOL 4 1 1.

PRPU2 3a 14 4 A 6 5 1
1RRE I 1

C)RAUPD I I
PRCLR
-'DMP
PREDGR 2 7 6 1 2 2 1

PREEFS 32

PRELD 1 5 6 4 2

PREPD 30 1 23 1 la15 1 2 9 3

PRESa. 4 27 1 1

PRFBKU 25 15 317 8 5 5 7

DRINIT 12

-DRIPRO 4 1 4 1 6 6 3 1 2

PRIRSV 4 4 3 2 1 1

-RNEFS 17

PRNXTO 12 13 11 2 2

PROUT 14 62 5 2 2 4 7

PRSTOR 4 1 1

PRTPLU 59 29 4 11 12 11 3 2 7 3

PRTPLU CLEART RAN 2
PRVIS I

PTCAL 5 Ill 2 2

PTCLR2 1 2 1 1

PTLGEN 2 9 6 7 1 1

PTI.SIT 1 17 5 1 1 2 1

PUT 9 2 1 25 5 1 2 1 2 2

NiT2 9 2 1 In 5 1 2 1 2 2

PUTCLR 1 2 1 1

PJTSET 2
PUTST2 2

VJOW 6 5 2 5 2

RAMSET 2 3 1 2 32 6 5 1

RDBLK 9 1 5 2 21 5 1 2 2

REED 11 3 1 7 52 23 1 2 2 217

MODULE INTERNAL A# B# C# DC E# F# G# H# 1# J# K#C L# M# N# 0# PC Q# R#

REED2 11 3 1 30 5 1 2 1 2 2 1

RSTPED I11
SAVELT 2 18 2 I1I
SMEN 4 1 4 1 5
SETFIL I I
SETRO 1 5 2 1 1
SETRD2 3 2 1 5 2 111

SINGS 141
SINGS MODSELECT 2
STPED 9 3 24 9 4 3 2

STPLT 8 3 23 1@ 3 1 3 2 1
TB2 136
TB2 IODSaLECT 2
TNULT
TRAN~S
-SBNST 2 1
TSBSNO 1 6 2 2 1
TSDBN 5 1 1

TSEA 1 1 4 4 21 1
3 7 1 6 2

TSEDGR 3 1 3

-sEm0V 14 1 3
TSESP 15 3 3 3 1 a 1 2 1

m7I1T 3 1 i 4 11

TSLOD 1 2 i
~SLDS2 31

rsWX 2 2 2
-SPVC 5 28 32 51
TSE'. AD1

isXMD! 3 156 n1 2 d 13 4

TSTXMD SETUPLOD 4 1 1 71
-STXMD SETLPAPp 4 4 1 24 9 7 2 3 112
TTiMUL
iVEC
L9DATE 1 I

VIDOUT
VIDPRO 8 3 13 is 12 72 62 3 3

VPAINC 3 3 25 7 1 1 3 2 1 1 1

VPUFC 1 1 4 1 5 5 3 1 7
'JPFADE 1 6 5 1
VPIFLD1
'JPILI4 19
'VLNDL 2 2 2 1
VPLTC 54 1 26 16 2 3 2 1
VPLF 2 20 2 2 9 s 6 1
VPSIMP 2 2 11 6 3 1 1 1 21
Y-rEX 2 1 1 1 i3 5 4 .
V) 11I 1@ 4 4

wINDOw 2
WN4DDMP 5 4 22 6 a 8 2
WRTFPL 1 1 121

Appendix D

Collected Data on Operations

Section 3 - Logical Operations

219

MODULE INdTERNAL A# B# C# Dt E# Ft G# At I# J# (# AI M# N# 0# P# G# R#

AREP2
AREA2
flREA3

PIRECAL
ARE,1OO

NUT I

COLOR ALAYERING a I1
COLOR I
CPBLND
CPFflDE 1
CPLITE
CSDEF

DECODE
DLCPL 1 3
DRCTRY 2 5
EDGCAL 11 4
EUSGENI
EDGORD, 2 3
EDGORD FACYT
EDWOUT
E-RR RPT

ZAOT5 6 3

PACPRO 15 23 7 3 5

FEP 31

FRAME2 5 9 1

FRPIE3 2 5
H~DROUT
INIT2 1
INIT3 2 4
I.OJT 11 2

LOD I
L25 5

LR2 MADSELECT
LSTOUT

MNFAD
.'ODCLR
.IlODCmT 2

MODIFY

MODRD
4ODSET
rqODST2

IMVE 220

WODULE INTERNk. A# B# C# D# E# Rt R H# 1# J# 0# L# 14# N# 0# P# Q R#

MtLT

NEhED 4 9

NSED6R
.NSGUT
.'NSRSLV 2
NSRSLV PRINTEDGE1
ORDER
0V.RID
ARSE 1
PATPRO 2
;OCNT I

PPFPL 4
PPINP 5
PPLIST 2
PPM'S6 1
PPSORT I

PRAPLU

PRAUPO

PRDMP
r-RED6R
PREEFS
PRELOD
PREPO
RESEL

PRFNIU
:9INIT

PRIPRO 3
PRIRSV 3
PRNEFS
P;NXTO
PROUT I
PRSTOR
PRTPLU
PRTPLU CLEARTRAN
PRYIS I
PTCAL 1
PTOLR2
PTLGEN 1
PTLSIT I
PUT
PUT2
PUTCLR
PUTSET
;AJTST2

REED 221

,ODUaLE INTERP& P,* q# C# D# E# F# G2# H#i I# J# K# L# M#* N# 0* P# Q# RS

REED2

RST PED
SAVELT
SCGEN
SETFIL

SUTRD
SETRD2
SINGs 68 68
SINGS 4CDSELECT
STPEDI
STPLT

T'82 5150
T82 MflDSELECT
yl~qLT
TRANS

MRST's
TSBSNO
-SDBN

'SEDA

TSEMO1V

-SINIT

73LODS

7SP INC
-SSmAD
'STXMD
-STX.'4D SETLPLOD

TSTXMD SETL'jP

'IVEC
uPDATE
VEC
VI DOUT
VIDPRO 3
VPAINC
VPCFC
VPFADE
VPIFLD
VPILN
VPLNDL
VPLTC
VPMLF
YpsimP

VTP 9 7
WINDOW
'ANDDMP

WRTFPL222

Appendix D

Collected Data on Operations

Section 4 - 4 Byte Real Operations

223

MIODULE !NTERNAL Aw St C D# Et F# S# m#* 1# J# K{ # M# N# 0# P# G# R#

AREAI 3 5
qRE?,2 1 15 12

8RA- 12 12
AREA4 4 14 1 1
ARECAL 612 4 16 4 3

a 11 3 2

CMOU4T
COL

C9LOR 5
MLOR PLAYERING

CPBLN4D 1 1 2 7
CPFADE IA 1 3 1 1 2 21

L)L I-i 1 1 3 16 5 1 4

CSDEF

DECODE 3

DRCTRY
MGcPl. I 25 3 1 1 1 4

EDSYN 4 ia 7 2 4,2 7 13 3 1 2 1
-:)GCG 1 1 3 1
EDGORD FACVT 1

EPRRPT

FACG.jT 1 1 6
11

FAMC.P 9 12 40 8 33 6 6
:34 2313 6 145 77 4 3 25 E533 4 +9 8

tD 63 34 4 25 1
REl 17 1 6 23

1 1ro 5 1 '16

'41T3 7
iNW'UT 1 3 1 3 3.3 1 1 1

,-4LT4 4# 2 la

LOD
LR2
-.Q MODSELECT

LSTOUT
mDCLR2

WFAD 11 1223 9 30 9 3 6 1 6
MODQ.R
V yDCNT
MGDFY2
MODIFY
MVDRD
PMaDSET
MODST2

mmV 1 224

,VDULE iN4TERNk A# B# C# D# E# Ft G# m# I# At KS LA M# Nt 0# P# Q# R#

MLT1 1 2

*E-ED 7 1
%EWPL 3
NSEDGR

%SOUT 32 6 a a a
NSRSLV 4
,4SRSLV PRINTED6E
JRDER 4
OVER ID
ARSEL I
PATPRO 12 12 9

aPT a 5 1
PP'FPL

ZIP2 3 3 1 3 2
PkIST
c :MSG
PPSORT

-RAPLtJ 4 6 4
PRAREA 2 16 111 2 2S 5 1 2 2 2

LRLD3 6 1 4

PRCLR

L;EDGR

PREPO
RES L 7 45 aE

: CL

P RNEFS
PRNXTOG
PRCjUT 28 4 2 a
PRSTOR 5
; RT:)Ld 1 6 2 1 11
PRTiPL.U CLEARTRKN
PRVIS
PTCa. 1 2
PTCLR2
PTLGEN 2 6 5 1 1 1 1 1 a
PTLSIT 3 3 11 4 1 2 1
UT

PUra
PUTCLR
FAJT SET
PLJTST2
9"AMT
RAMSET
RDBLK

RM 225

!M0DULE INTERNWL A# B# C# D# E# F# 5# 'i I 1* J#K L# M#4 N# G# P# G# R#

REED2
R0TNAT 3 3 19 is
RSTPED 2

SAVEL 7 6 2 2

SCGEN
SETFIL
SUTRD
SETRD2

SINGE 3 17

SINGS KNDELECT
STPED 23 211

MTPT 2 9 11
112 3
TB2 MODSE.ECT
7KLT 2 2
TRANS 1
rS-3NST
7SBS.N 5 2 1 1
TSDBN 5 2 2 2
7SEA 6 1313 52 38 9 1 1 21i31

';EA25 2 37

-SED3R 6
TSEMOY
,SEEP !2 4

TSINIT 16

-SLOD 1 2 1 3 1
TSLODS 1 1 31

TSPN 3
iS 3 11

TS~D6 4 7 5 28
7STXMD SEruPLQ.D 12
TSTM SETUPYPP
T7rIJL 1 12
TVEC 1 12
UPDATE
VEC 1 12
VIDOUT
vIDPRO 2 2 2 a 1 2 2
VpAINC 2 4 75 6 6
VPCFC 6 it 8
VPFADE 4 7 25 2
'PIICU 2 2 2
VPILN 2 9 11
VPLNDL 2 4 11
VPLTC 9

VMF1 1 2 8a 8 2 62a
VPSIMP 2 3 41 16 3
VPTEX
VTP 35 18 6913 1595 31 1 2 9124 21i2
wimD 4 2 2 8 27
",DDIP

WRTMP 226

Appendix D

Collected Data on Operations

Section 5 - 8 Byte Real Operations

227

~DUE :T~3 A# N43 C# D# E# F# 7; - # K# L# t*' 0# P# 3

AREA1

AREA3

ARECL
AREMD
C£MiuT
COL
COLOR
LOLCR ; ~R IN 6

DECODE
DLCAi.

EDS6EN
ErGORD

AFE,

:RME 1 z 3 6 5 4 4

:NIT3

LNGLAT 5 3 9 3 4 7
LOD
LR2
LiR2 MOD'3ELECT
LSTOUT
MDCUR2
WFAD '3 3 72
?M0DCR
MODCNT
MOQDFY2
MO3DIFY
MODRD
MODSET
MODST2
MODIIA

MME 228

MODLLE IINTER&A Q* 30 C# D# E# F# G# H#t I# AC K# A* N# 0# P# G#R

MLLT
NEWBLX
.NM~
4EWPL
NSEDGR

.%UT
NSRSLY
NSRSLV PRINTEJ-~z:E
CRDER
NVE.'ID
PARSEL

PPMSG

;PUOL

,;RCLR

REEFS

PRNXTO
PROUT
PRSTOR
PRTPU
PRTPLU CLEARTRAN
PRVIS
PTCA..
PTCLR2
PTLGEN
TLSIT

PUT
:JrT2

;uT:E7
MJST2
; P*T
RMaT
;RDSL

REED 229

MODL.LE INTERNk. A# B# Cw *E# F# G# H#v 3 J# K# L# 4* P.t 00 R#

3STPED
SAVE T
SESE
a-TFIL
SUTRD
SETRD2
SINGS
SINGS AODSELEC7
STPED
STPLT
TB2

Th2 0SEE
.: -1
H pS

TGL3DS
-SyuxJ
T Sp I NC
7SSHAD

3TXM"D SETUPLOD
TSTXMD SETUPAP

IVEC

VIDOUT
VIDPRO
VPQINC
VPCF:
VPPCQC
VPIFLD
V.OILN
VRLNDL
VPLTC
VPMLF
VPSIMP
VPTEX
V.IP
WINDOWI
WNDD#P
IRTFPL 230

Appendix D

Collected Data on Operations

Section 6 - Other Operations

231

'QD4LE INTERNAL Ps st E1 #~ F# G#- *J tL IM 4C>~ IT

CE216 6 2 1
18 12 2

PREPA '4
ARECAL 1

GMNOJT 15 1

COLO 1

CLYR164 5 2
5

CPFADE 43
CPUTE 5 1 1 2

8 9

-12 2' 16
DECODE 161 2
OLCAt. 13
DRUTRY :314 r71

EDCA 5 3 3 1 4

swim 2 2 . 4 a8

EflGORD 7 6 6
EDGORD FPCVT
EDWOUT 5-

4 3 17 4 4
FAGT14 1 1 I

FACPRG 7 '3

FDCMP
sa 29 4

3
2 222L2652 2.'

18 34 -J8 1 9
A1 19 2 5 5

HDOUT
NI.T2 a 'J

~T3 2
--J 38 19 I

OlpGL 2 23
LOD 2 1 i

LR2 5 1
LR2 MODSELECT
LSTOUT I
"DCLR2 2 3

MODCUR 2 3 1
f4ODCN4T 5 2 4 4
MODFY2 5 1 1

MODIFY 4 73

'00DRD 2 4

-3DSET 3 4 1 1

V'DS 3 4 11
ML261

MOWE 2 2352

1-0'LE INTERWL. A# 5#: ~ ~: G# H# 10 J# K# 54# ~ P# Q# R# S# T*

IMULT 3
3 6, 6

NSEDGR38
3 4 .27 3

,SR. 12 4 1 6 4 5

ORDER 3
OVERID 14 3 2

~QSL6 5 -'

-4 6

4 14
13 2 6 6

D'PINP 6 2 .3 4 4

PLIST 9 2

:-PSORT

PRPREA

RDMP --

252

P'REPD

55
PRIRSV 1c2
PRNEFS

PRNXTO 3a8
PR 0LT 18 7 2;S 3 1

a 4

PRTPLU LE R
PRVIS 36 36
PTCL 5 4

PTCLR2 a23
P'n-GEN 13 9 7 3
D-71SIT 7 14 7 7
PUT 6 2 1
PUT2 6 -1

PUTCL.R 2

PUTSET

6 3 2 7 3 3

RAMSET 7 3 14 14 4 4 2 6
RDBLK 2 -1

REED 5 24 2 2 233

A#EN~ B4# Ck D;; E# Js K# L# M# Ati2;~ Rl Ss T#

REED2 5 4 13-

RGTMAT 61
RSTPED
SAVELT 2 5 3

- 7

2

SUTRD2

SINGS 1ODSELECT
SPE2 a28 3 2

7S3 28 1
-. 2 1313 532 1 226

TSBNST E51

7 EA1 4 1 '

7SL DS . ~ 13 ' 4 4

TSIC2 6 3.
6 3 1

2 2
-SX D BE--4 2 1

6
2

3
7 K3 2 2 7:: 3 3

VpA INC 13 4 1 .3

w 74 4
7 14

4PILN

'vLC4 3 5 4 ~ 1

4

VTP 65 1 '5 20 20 C.

ol1NDIO 3 1

ooNDDMP 5 2 1 3 5 5 2
wRTFP*. 4 1: 23

SECURITY" CtASWSl'iC=0Wilk-C7 THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG/89D-40
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

SCHOOL OF ENGINEERING I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

AIR FORCE INSTITUTE OF TECHNOLOGY
WRIGHT PATTERSON AFB OH 45433-6503

8a NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

6c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

DYNAMIC ARCHITECTURE COMPUTER
12. PERSONAL AUTHOR(SP PATRICK E PRICE

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
MASTERS THESIS FROM TO 1988 DECEMBER 241

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identid by block number)

FIELD GROUP SUB-GROUP COMPUTER

ARCHITECTURE
[)YNAMTr

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

THE PURPOSE OF THIS THESIS WAS TO DESIGN A COMPUTER THAT COULD PROCESS A LARGE VARIETY OF
CALCULATIONS WITH A MINIMUM OF HARDWARE. THIS CONSTRAINT REQUIRES A COMPUTER THAT CAN CHANG
ITS STRUCTURE TO MATCH THE DEMANDS OF THE PROBLEM CURRENTLY BEING CALCULATED. COMPUTER
IMAGE GENERATION WAS SELECTED AS AN EXAMPLE PROBLEM. THE PROCESSING REQUIREMENTS OF REAL-
TIME COMPUTER IMAGE GENERATION REQUIRE CALCULATION OF VERY LARGE REAL NUMBERS AS WELL AS
VERY SMALL LOGICAL VARIABLES. THE RESULTS DEMONSTRATE THAT, IN A BEST CASE ANALYSIS,
A DYNAMIC ARCHITECTURE COMPUTER CAN DEMONSTRATE AN IMPROVEMENT IN PROCESSING SPEED OVER
CONVENTIONAL SINGLE INSTRUCTION, SINGLE DATA COMPUTERS.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
X3 UNCLASSIFIEDUNLIMITED 0 SAME AS RPT C1 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

_ r PRTCF (513) 255-8926 ASD/YWSE
DL) Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

